Technical Report TR-UNL-CSE-2006-0006, Department offiLien Science and Engineering, University of Nebraskaedlim
Lincoln, Nebraska, USA, 15 April 2006

Sofya: A Flexible Framework for Development of Dynamic
Program Analyses for Java Software

Alex Kinneer, Matthew B. Dwyer, and Gregg Rothermel
Department of Computer Science and Engineering
University of Nebraska—Lincoln
Lincoln, Nebraska 68588-0115, USA
{akinneer, dwyer, grothé@cse.unl.edu

15 April 2006

Abstract

Dynamic analysis techniques are well established in the software eriggneemmunity as methods for vali-
dating, understanding, maintaining, and improving programs. Gengdtatlyclass of techniques requires developers
to instrument programs to generate events that captuhsarve relevant features of program execution. Streams
of these events are then processed to achieve the goals of the dynatygisanThe lack of high-level tools for
defining program observations, automating their mapping to efficientdeal-implementations, and supporting the
flexible combination of different event-stream-based processingonants hampers the development and evaluation
of new dynamic analysis techniques. For example, mapping non-tpkégram observations to existing low-level
instrumentation facilities is a time-consuming and error-prone procetsgdhaeasily result in poorly performing
analyses.

In this paper, we preseof ya - a framework that we have developed for building dynamic analysis.t@'dés
describe the architecture &bf ya, and explain how it meets the challenges faced by developers of a ande-r
of dynamic analyses. We survey existing dynamic analysis tools to shavihey relate to the capabilities of the
Sof ya framework, and we show ho8of ya improves on their shortcomings. Finally, to illustrate the flexibility
and effectiveness of the framework, we describe our experiglamedoping several state-of-the-art dynamic analyses
usingSof ya.

1 Introduction

Many interesting problems in program verification and \atiioh concern observing, abstracting, and modeling the
behaviors programs exhibit during execution. Dynamic paoganalyses, which consider the execution behavior of
selected program runs, are a powerful complement to toadititesting techniques. Whereas testing typically focuses
on the relationship between a program'’s inputs and outgytsamic analyses are usually formulated to focus on the
internal workings of a program. This allows them to detedtgvas of behavior that can be abstracted and related to
models, such as invariants [10], automata [2], coverage [@&, 25] or sufficient conditions for data races [27], in
order to characterize program behavior, detect errors ambaarved program run, or predict potential errors that may
be exhibited on other program runs.

The most common application of dynamic analysis is to peréorce and memory profiling, but researchers have
also exploited run-time monitoring to target a much wideigeof program analysis applications. Broadly speaking, a

dynamic program analysis can be thought of as either a pyopleecker which compares observed program behavior
to a given model, or a propertyiner, which extracts a model of observed program behavior. Rwnfroperty
checking has a long and rich history. Developed initiallyaasieans for understanding and debugging distributed
programs, over time it has evolved from checking propemdesingle program states, such as array bounds and
null references, to checking properties that relate to iplalprogram locations, such as data races [27] and method
atomicity [12, 32], and also to approaches that are paraimeteby rich user supplied sequencing specifications
[7, 13, 15, 18]. Sophisticated approaches to mining speatifics have been a subject of research in recent years,
resulting in tools for inferring program data invariant®[temporal relationships between program actions [34], a
object protocols [2, 34].

Implementing a dynamic program analysis for modern objeented languages, such as Java, presents a number
of challenges. Different analysis tools address thesdesigds through different techniques and implementation
strategies; consequently, we consider these challenggsi@is of variationin the space of possible dynamic Java
analyses. We identify four major points of variation:

Program observations. Analyses may require very different information about peog execution. Some analyses
may be sensitive only to the occurrence of certain prograentsyi.e., for Java programs an event can be mapped to
a class of byte-codes, whereas other analyses may reqtaitedenformation about the data state of the program.
flexible analysis framework must support the definition ofdewange of observations of program behavior.

Efficient event generation. The raw material of all dynamic analyses is a stream of eubatsreflects the sequenc-
ing of actions and states encountered during a program reme@ting events and delivering them to the analysis
implementations can slow down program execution by ordensagnitude if care is not takerAn efficient analysis
framework must build on an array of optimization stratedimsminimizing the overhead of event generation.

Selective event processingSophisticated program analysis problems often requirerthatiple sub-problems be
solved and their results combined. Teasing a raw eventrsteggart and directing the relevant portions to each sub-
problem while maintaining the independence of sub-probi@mplementations is a challenge in itself. Achieving
this while maintaining an acceptable bound on the use oageofor analysis information is even more difficulk.
rich analysis framework must provide a generic and modulahitecture for assembling complex combinations of
sub-analyses.

Concurrent event reporting. Dynamic analysis of multi-threaded Java programs is carapd by the fact that the
implementation of synchronization operations is embedsigitin the JVM. This makes it difficult to provide high-
fidelity event generation for operations such as lock adtiisand release in a manner that does not perturb thread
scheduling, is portable across JVMs, and is efficiéndynamic analysis framework for multi-threaded progranusm
provide state-of-the-art strategies for generating syanfzation related program events.

To date, implementors of dynamic analysis tools have cdesteh tools independently, with little thought given
to reuse or comparability. While low-level frameworks sushtlae Byte Code Engineering Library (BCEL) [3] and
ASM [9] provide infrastructure for implementing such effarthey do not provide the high-level functionality reepair
by many dynamic program analyses. Consequently, researbbee been forced to build that functionality on their
own and have not, therefore, effectively leveraged eachrstlefforts. This not only increases the time required to
implement analyses, but also the likelihood that commoorstor inefficiencies will be introduced into analyses.

2

Beyond the problems inreatingdynamic analysis tools, variation in implementation stgéts across different
dynamic analyses makes it difficult tmmpare and evaluate the cost-effectivergfsspecific analysis algorithms
and data structures. For example, Wang and Stoller [32]gz®pwo very different algorithms for dynamic method
atomicity analysis; if these algorithms had not been imgeted in the same framework it would be difficult for
researchers to empirically isolate differences in thertlgms from differences in implementation frameworks.

To address the foregoing problems, we have credeflyfa): a framework that supports the development of a
wide range of sophisticated dynamic analyses for Java gnagyrwhich is available &t t p: / / sof ya. unl . edu.

Sof ya offers several advantages to developers of dynamic Javgrgmoanalyses. FirsGof ya is designed to
provide efficient and flexible solutions for each of the oladles listed above, and thus to support a broad range of
dynamic analyses. Nex®of ya is architected to foster reuse of its core components asagsaidbmponents that are
integrated into the framework by analysis developers. TBobya offers the potential for reduced development time
and run-time overhead, along with increased correctnedgramic program analyses. Final§of ya provides an
architecture into which multiple analysis techniques caesily integrated. ThuSpf ya facilitates experimentation
aimed at understanding the relative cost-effectivenedymdmic analysis algorithms and data structures.

In the next section, we discuss the challenges faced wheleingmting dynamic analysis techniques in Java.
Section 3 presents the architectureSoff ya and details the ways in which those challenges are addreSssation
4 surveys the wide variety of analyses that are of interefitegorogram analysis community, and explains how their
requirements are met I§of ya. Section 5 presents three example dynamic analyses frosuthieyed applications
that we implemented using tH&of ya framework. We discuss our experiences developing theskcatpns and
guantify the effort required to build them in the contextSaff ya. Finally, Section 6 summarizes the current state of
Sof ya, and plans for extending it.

2 Dynamic Analysis Challenges

The ability to observe program execution is fundamentalltdyamamic program analyses. Events that need to be cap-
tured range from the simple, such as execution of strucantiies (for example basic blocks), to the more complex,
such as thread and object creation, field manipulations objett locking behavior. Monitoring for events in Java
software is most often achieved through instrumentatidsyté-code, predominantly static instrumentation. Howeve
the strict verification rules for Java class files and thekstachitecture of Java byte-code can make the implemen-
tation of instrumentation difficult and error prone. Alsmaply designed instrumentation introduces performance
overhead, and suffers from limitations that can affectsialcorrectness, especially in a multi-threaded enviemm
Event capture based on the the Java Virtual Machine Toolfae (JVMTI)Y or Java Debug Interface (JDI) are also
sometimes employed, but these too introduce challenges.

The event streams resulting from observed execution oémystre often long and complex. This can be espe-
cially problematic in multi-threaded systems where evéamaifferent threads may be arbitrarily interleaved. These
issues lead to significant challenges in interpreting aodrgg event stream data when implementing dynamic analy-
sis techniques. For example, trace files may be too largete st process efficiently, or a technique might need to
differentiate between events occurring in different thisea

IPreviously the Java Virtual Machine Profiling Interface ™).

In the remainder of this section, we present detailed dgous of the challenges related to definition of program
observations, byte-code instrumentation, event capstweage, filtering and processing, especially as they ipeda
multi-threaded systems.

Program observations. Specifying events in a program that are considered obsemgtf interest is an important
task in implementing a dynamic analysis. It is desirablelimiaate the dispatch of irrelevant events at the earli-
est opportunity to minimize overhead and maximize analgfiisiency. Ideally, an analysis implementation should
constrain the instrumentation and the request of events fre JDI to the minimal amount necessary to capture the
desired observations. In this way, no overhead is introdifmeevents that are irrelevant to the analysis. Speci6oati
of events should be clear and understandable, separa@rdgetinition of observables from details of the implemen-
tation required to generate the associated events. As thplerity of observations increase, notations for speegyi
them must become more expressive to support natural désarigf both the observations of interest and where the
associated events can occur.

Existing libraries and tools such as BCEL are often used fément instrumentation of Java class files. Such
tools can meet the objective of minimizing instrumentatiout they require intimate knowledge of the construction
of Java class files and the byte-code instruction set. Thpedms a steep learning curve, setting the stage for the other
challenges we discuss in the following sections, and lepttimepetition of common errors. These tools require that
program observations be defined in terms of the instrumienténplementation required to generate them (which
may not be the best, or only, implementation that can be ugeddy consequence, they do not satisfy the requirement
that specification of observable events should be cleaemstahdable, and independent of implementation details.

Many analysis tools build on libraries such as BCEL to geteetlhe program observations they require. This
approach causes researchers and implementors to embgeuktiication of desired observations within the imple-
mentation logic of their tools. The result is that encodin§®bservations then become difficult to reuse for other
purposes, or even to modify for new extensions to the originalysis.

As an example, consider two analysis applications (forgpatnining and property checking) that we discuss in
Section 5 — both analyses require similar information, is ttase about call events, but they differ with respect to
where in the program they need to observe such events andiygleadf information they need to extract about the
method calls. In a traditional approach, we would have tdémgnt an instrumentor and event dispatch components
for one analysis, then modify or create new implementatairikese components customized to the second analysis.

In summary, implementors of new analyses are faced with wgthc alternatives: spend the time necessary to
understand and modify an existing tool used for some prevanalysis (which may itself contain errors), or use a
library such as BCEL to construct the analysis from scraactd (ikely repeat common mistakes). To our knowledge,
no tools or frameworks exist to bridge the gap between pawget difficult to use libraries and tools, such as BCEL
and the JDI, and the task of specifying desired observatierded to implement interesting dynamic analyses.

Efficient event generation. All instrumentation has an associated cost. The extra eegflintroduced at runtime

is often an important consideration when performing a dyinaanalysis and evaluating its usefulness. Standard
practice in Java is to implement instrumentation probes ethad calls to a special class, that in turn emits trace
data or collects the events and produces a summarizatiois. iSTbften sufficient, particularly for smaller systems
and collection of infrequently occurring events. Unfoitely, for large volumes of events (such as those seen when

observing execution of structural entities) this approeeh introduce intolerable overhead. Systems with fredyent
executing or deeply nested loops, or many threads, are iaipestisceptible to such overhead. For example, in an
early implementation dbof ya that used this strategy, a program with three-deep nestged lwas observed to suffer
upwards of a 250x slowdown when instrumented.

Another challenge for efficiency and correctness is how thnobservation of an entire system in a way that
does not interfere with its execution environment. Spedlific there are multiple issues involved in providing for
communication between instrumentation probes that areués@ by the program to generate events and the analysis
components that process events. One technique that waspgetk in an early version dbof ya is to invoke a
system by executing themi n method of the appropriate class using Java reflection. ttinfately this technique
does not result in the system running in its normal executiomext, as it is now running within the same JVM
as the analysis components. This forces both to competédosame resources, such as memory, and can lead to
problems in the observed system and in the analysis como(&rch as when the system under observation calls
Java’sSyst em exi t method). If the observed system is executed in a separate @tHdr issues arise, such as
providing efficient interprocess communication, contngllthe observed system, capturing outputs, and ensuring
orderly termination without loss of observed events.

Selective event processinddynamic analyses frequently benefit from, and often regthieability to filter or classify
runtime events occurring in the system based on type or xpbriter example, an analysis might need to differentiate
events by their executing threads, or the identity of thectsjon which they act or occur. It might even need to change
its filtering criteria based on prior observed events. Teples are frequently implemented using post-processing on
monolithic traces in which actions of different threadsiaterleaved. A significant cost is associated with recawri

the event streams for individual threads, as well as theespaguired to store large concurrent traces. In some cases,
information about threads may even be unrecoverable figignily reducing the precision of an analysis.

A common approach is to collect trace files and apply the aimbs a post-processing step. However, this can be
impractical (and inefficient) when there are many tracestodilected or traces are very large. We have experimented
with techniques that can generate multiple trace files tattggn 2 GB [20] (before many of the current features of
Sof ya were available). Most often, this is because the techniquedpturing events lacks the flexibility to perform
filtering and classification tasks during execution.

Different analyses may benefit from performing processimgjihe”, as events are received, whereas others may
require the collection of trace files for post-processingosidynamic analyses implemented today generate a trace
file in a fixed format convenient for the analysis in questionconsume events in a way that is integrated into the
analysis components. Both of these approaches inhibierand make such implementations unsuitable as general
frameworks for implementing other analyses.

Concurrent event reporting. The greatest challenge that limits instrumentation is dfi@tbserving events in multi-
threaded systems. A majority of analyses for concurreniesys are sensitive to the order of events observed in
the programs, and the validity of claims derived from suchlygses is greatest when the natural order of events in
the program is best preserved. Thus, techniques for olmgeevients should avoid perturbing the natural order of
events in the system, yet report the ordering faithfully.fdstunately, it is often difficult to achieve these goalsiwit
instrumentation alone.

Instrumentation involves insertion of additional exetlgacode, which is itself executed by the threads in the
program under observation. As a consequence, executiamstifimentation is subject to interruptions caused by
context switches between threads, a situation that caredhasexecution of a probe to be separated from the event
it is intended to report. The resulting event stream will tien faithfully reflect the order of events that occurred,
and in the worst case can lead to reported sequences of ¢évantse invalid. This problem is almost always solved
by protecting, with a global lock, the execution of probed ande corresponding to the event to be reported. The
mutual exclusion enforced by the lock does guarantee thaéaent witnessed by instrumentation will occur before
another event may be witnessed. However, this techniquerissive; it disrupts the natural ordering of events in the
program under observation, and incurs a severe perfornmeradty as the instrumented program spends much of its
time contending for the lock to execute instrumentation.

As previously noted, services such as the JVMTI or JDI areetiones utilized to avoid the problems associated
with instrumentation. These services provide facilitiesfequesting and receiving events relevant to program exe-
cution directly from the Java virtual machine in which thesetved software is running. This approach does avoid
many of the problems associated with instrumentation, tthes limitations of its own. The JVMTI is a native code
interface, which results in platform specific analysis soahd imposes a high learning curve on users. Both services
constrain analyses to working with a limited set of eventsl, they are not easily extended due to their dependence on
the capabilities of the virtual machine. Finally, they aaggeted at performance profiling and traditional debugging
and as a consequence often lack support for finer grainedisel®f events, which leads to unnecessary performance
degradation.

To illustrate this point, we consider the case of observieghmd entry events with the JDI. When these events are
requested from the JDI, a discrete event is raised for evethod called. A facility is provided in the JDI to filter
calls, but the filtering occurs in the receiver of the JDI év@neam, not the observed program. Thus every event is
transmitted through slow interprocess communication bk even if the event is not ultimately consumed. This
cost is doubled if method exit events are also observed. Werwéd this to yield inferior performance compared to
techniques that use probes to raise events only for methisdbéanterest.

3 Sofya Overview

We now present our framework for supporting dynamic analysle first describe the high level architecture of
Sof ya to provide a basic understanding of how typical dynamic ysigalimplementations make use of the frame-
work. We then revisit the challenges described in the prevgection, and discuss how various components of the
framework address them. This discussion shows Bofvya both relieves practitioners of the difficulty of dealing
with these challenges, and does so through abstractiortaifdli@to a clear and simple publish/subscribe architectu
that facilitates rapid implementation of new analyses.

3.1 Architecture

Sof ya is organized as a layered publish/subscribe architedtlustrated in Figure 1. These layers can be grouped
conceptually to identify the broader services they providete that in software design, a publish/subscribe model is
typically realized through use of theBSERVERpattern, and this is the approach we took vathf ya. A component

6

(7

Semantic Structural
Vs ~ AbstractEventDispatcher
Layer 6
Client Application/Analysis . . .
SemanticEventDispachep ProgramEventDispatche| JUnitEventDispatcher
L]
ayer 5 I L SocketF’rocessmgStrategy‘ ’ JUnnProcessmgStrategy‘
Event Selection and Filtering| | 44— = =
EventListener ‘ -------------------
Coverage
Layer 4 ProcessingStrateg >| CoverageLlstenerManager]t

Event Dispatch

Sequence
ProcessingStrategy BlockCoverageListener ‘

Layer 3
Communication

Layer 2 J
Instrumentation ~

Layer 1 J

Static Analysis
. J
BranchlInstrumentor a -
(.
Class extension or s Internal interface Multiple interface :
)) . ——> Dataflow - - = Event publishi A~y e) . ----# Insertion
interface implementation vent publishing dependency implementations
(bidirectional data flow) (abstracted for clarity)

Figure 1: Sofya Layered Architecture.
that publishes events istispatcher and a component that subscribes to events implemdisteaerinterface. Thus,
when referring to implementation components, these ardeims that we use. Layers 1 through 4 support the
publishingof events to observers; Layer 4 is important as the layer &hwtlients maysubscribefor events. Layer
5 supportsrouting and filtering of events. Layer 6 is the client application layer, wherenévdor which clients
have subscribed are consumed to implement particular semlyVe give a brief overview of each layer’s individual
functions, and then discuss them in additional detail.

Layer 1 is composed of optional static analyses that prowitlgmation to guide the instrumentation process.
Layer 2 handles the instrumentation of Java class byte-tndapport generation of event streams. Layer 3 is the
communication layer that provides transmission of insentation probes and JDI events from the monitored system
to the event dispatchers. Layer 4 is the event dispatch lalyere events are packaged and dispatched to observers; this
layer defines the principle interfaces to be used by clieftfseoframework. Layer 5 provides classes and interfaces to
support filtering and splitting event streams based onr@itaich as thread and object identity. Layer 6 is purely an
abstraction, to represent the layer at which analyses agemented on top of the services provided by Layers 4 and
5.

Layer 1: The static analysis layer is used to implement analysdsaifeanecessary to support event dispatch, or
that provide guidance to other layers, especially the umséntation layer (Layer 2). Information computed in
this layer may improve the efficiency of the framework in atheyers, or facilitate more precise results for some

analyses. The main implementation provided3nf ya at this layer is the control flow analysis supplied to the
Bl ockl nstrument or (basic block) andBr anchl nst r unment or components to implement structural instru-
mentation and event dispatch.

Layer 2: This is the layer at which byte-code instrumentation idqrened. All of the event dispatchers (at Layer
4) provided bySof ya depend on the use of instrumentation. InstrumentoBoiya extend from the abstract base
classl nst r unent or and are built using BCEL. They may rely on information preddy Layer 1 or internalized
knowledge to insemprobesin the program to raise some or all of the events that will lspaliched in Layer 4. They
are also responsible for inserting any instrumentatiomired to establish Layer 3 communication, using the JDI or
probe classes.

Layer 3: Communication between monitored systems and the evepatdisers at Layer 4 are provided by this
layer. Choosing the communications channel(s) and defitiegrotocols for data packaging and transmission are
the primary responsibilities of this layer. The activitiesthis layer are often tightly integrated with Layers 2 and
4, and may be implemented to some extent in those layers. EDRe obe and Socket Pr obe classes provide
fields and buffers used by the actual byte-code probes atsarto the program. They may explicitly manage socket
communications and protocols or those functions may beigeovimplicitly, as is the case when using the Java Debug
Interface (JDI).

Layer 4: The event dispatcher layer is the most important layer fients of the framework, as this is the layer at
which event streams are actually dispatched (publishdidfémers (subscribers). Event dispatchers are resgerisib
accepting information received from Layer 3 and packadiim® the discrete events that are dispatched to registered
listeners.Sof ya provides event dispatchers for both semantic and strdaueats.

ThePr ogr anEvent Di spat cher is the structural event publisher, which provides basiorimfation about the
execution of structural entities in the observed systerth s$ basic blocks and branches. It depends on components
implementing aSTRATEGY for receiving instrumentation data from the observed sgsta the form of components
implementing aSocket Processi ngSt r at egy. As noted previously, th&ocket Pr obe in Layer 3 handles
processing and transmission of data, recorded to its Isuffgrstructural instrumentation probes, to the event dis-
patcher using a socket. Fo8ocket Processi ngSt r at egy implementations are provided to receive coverage
and sequence execution event streams for basic blocks andhas. Coverage event streams are dispatched via
the Bl ockCover agelLi st ener andBr anch-Cover agelLi st ener interfaces, sequence event streams via the
Bl ockEvent Li st ener andBr anchEvent Li st ener interfaces. Coverage listeners are served by a listener
management clas§€over ageLi st ener Manager, to improve efficiency in the case where only one listener is
interested in the coverage event stream. Components at bayeclients at Layer 6 implement these interfaces to
subscribe to event streams.

A Semant i cEvent Di spat cher acts as the publisher for semantic event streams. Semamtitseinclude,
but are not limited to, events such as field reads and wribek,dcquire and release, and method call, entry and exit.
Informally, we define semantic events as events that conrateinformation that is sensitive to the meaning of the
program as it impacts data state or control dependence.Olh@dvides the Layer 3 communications implementation
used by theSermant i cEvent Di spat cher, assisted by th&DPr obe. A subset of the events supported for this
type of event stream are implemented bySeerant i cl nst r unent or at Layer 2. Layer 1 information is specified

sys.prog
mod.prog
E - virtualcall Featurelmpl.*{
in ClientManager.*
not ClientManager.setup *

}

E + virtualcall Featurelmpl.init *{ }
E + interfacecall #INT RemoteAPL.*{ }

Figure 2: Sample EDL specification.
by users of the semantic event dispatcher in a rich languagketcribing the events to be observed, which is described
in Section 3.2. The semantic event stream is published eiB\tlent Li st ener interface.
Layer 5: This layer provides components for filtering and splitteggmantic event streams published by the event dis-
patcherg. Of greatest interest are the thread and object streamiiifetasses. The&hr eadFi | t er splits an event
stream, routing events occurring in separate threads toatdisteners. It depends Ghai nedEvent Li st ener -
Fact ory to create new thread listeners on demand. Similarlyajrect Fi | t er class is provided to route events
occurring on specific objects to separate listeners.

Layer 6: This is the layer in which client analyses are implement®dansumers of the event streams published by
Layer 4 and routed by Layer Sof ya provides an atomicity checker and a regression test setetiol (see Section

5) as examples of applications at this layer. The former destnates direct implementation of the listener interfaoes
process a semantic event stream as it is received. Thedatteonstrates use of a structural event listener to generate
trace files on which to perform its analysis.

3.2 Implementation Challenges Revisited

We now revisit the challenges discussed in Section 2; adihgshem has been a guiding principle in the design of
Sof ya.

Program observations.Sof ya addresses the need to define a specific set of observabls avénb different ways
depending on whether a structural or semantic event streamkie published. Static input controls are provided to
limit instrumentation and the selection of JDI events totiaimum necessary to publish a specified set of events.
These are further augmented by runtime controls, but we diaeassion of these features for when we address the
need for selective event processing.

To address the need for selection of observable events wh@isiping a structural event stream, the instrumentors
present parameters to select the types of structuralesniitithe program to be observed. Instrumentation is then in-
serted only as necessary to publish events for the selectmtisal entities. Observable events can also be consttai
by instrumenting a subset of classes, and the programm&tis &f the instrumentors enable selection of individual
methods for instrumentation. This provides a low barriegmtiy to a high level of flexibility in specifying structural
events to be observed.

A rich event description language (EDL) is provided to erahk specification of observations generated in se-
mantic event streams. EDL can specify the parts of a systewharh events should be observed and published; for

2We find that applications using structural event streamsyragguire complex filtering or event processing functiotyali

example, the classes on which method call events should tilesiped as program observations. A rule system sup-
porting wildcards and an additive/subtractive precedemaéel supports powerful specification of subsets and specifi
parts of a program for which observations should be captured language supports even further expressiveness by
providing the ability to constrain the publishing of evergtated to an observable based on the location at which the
event is raised (for example, a call to a method on an obskeresdss could be excluded if it occurs within a specific
method of another class).

Figure 2 presents a simple EDL specification that we useustitite the capabilities of the language. The first
two lines identify files in theéSof ya database directory (a central repository for a variety tdrimediate and output
files created by and shared amddgf ya components) that list Java classes related to the prograier @amalysis.
The first line specifies the file, “sys.prog”, that lists thasdes that comprise the entire program, which is necessary
to insert all required instrumentation. The next line sfesithe file, “mod.prog”, that lists the classes for which
program observations are published by default. This mdaatsall events related to those classes will be published
unless excluded by rules in the specification. The remaiofkge file is a set of rules specifying additional constrsint
on what events are considered observations of interest hacewhey may occur.

The first rule specifies that all calls to virtual methods iempénted in the clagseat ur el npl are to be excluded
from the event stream if they occur in any method in cl@ssent Manager other than method “setup”. Package
qualifiers are required fdfeat ur el npl andCl i ent Manager if appropriate.

The second rule specifies that all calls to the virtual metiatf of class Feat ur el npl with any signature are
to be included, regardless of where they occur. This ovesritie first rule for calls to method(s) “init”, but not for
calls to other methods.

In the third rule, the “#INT” token is an example of ament payloadnodifier. It indicates that the method calls
should be observed using an “interceptor” method that esathle event to provide access to information about the
receiver object and arguments to the method. Because thet@gher cost associated with using interceptors, they are
not used by default. However, this illustrates additidiedibility afforded by EDL to refine the information delivered
to clients, thereby providing control over the tradeofféAmen information and efficiency.

Efficient event generation.Sof ya provides efficient instrumentation to reduce the perforcegrenalty experienced
by observed programs. When observing execution of strdotmtéties, Sof ya uses arrays (typically byte arrays)
to record execution of code entities. Array accesses a@egfticompared to method calls, and are common inside
loops, which leads to very efficient handling of the instimies. Method calls are made by the instrumentation only
to retrieve and commit these arrays on method entry and\&ien observing semantic evenBaf ya writes coded
integers to static fields, also an efficient operafidn. practice, this has led to significant observed improvesian
the execution times of instrumented systems. These sigatagd optimizations for event generation provide a level
of sophistication we believe has not been achieved by otliés for observing events in Java programs.

Layer 2 of theSof ya architecture offers opportunities for powerful custortia in instrumentation. Unlike
higher layers, customization of instrumentation may ¢tgreater level of implementation effort. Nonetheless; si
nificant support is provided to facilitate such efforts, twegf that available from libraries such as BCEL. A new instru-
mentor can be implemented by sub-classing 8oty a class and overriding five abstract methods. The infrastract

3The fields are monitored by the JDI, and used to then insertghepriate events in the event stream with other eventsdaiatively by the
JDl itself.

10

provided bySof ya handles all of the details of using BCEL to load classes,igmaccess to byte-codes, and commit
changes, in addition to a variety of utility methods to parf@ommonly needed but error-prone transformations.

Handling of invocation and communication between mondmgstems and analysis components is greatly sim-
plified by Sof ya. All of the event capture componentsSof ya provide efficient, rigorously tested implementations
that handle the tasks of setting up and managing commuaiichtitween observed systems and analysis components.
Implementors of new dynamic analyses can focus attentich@design of their analysis tools and techniques with-
out spending time on the details of mechanisms for captamcommunicating the events on which those analyses
depend.

For applications that seek to customize the communicatiger] the task is simplified to reasoning about and
implementing newprotocolsfor communication, rather than dealing with the detailsafrection and link manage-
ment. This separation of concerns underscores the flayibilthe layered architecture in providing for customiaati
without impacting other functions of the architecture #igantly. It allows different protocols and communication
strategies to be used while reinforcing familiarity by eéng a consistent publish/subscribe model at highertaye
used by client applications.

Selective event processinglVe use two approaches to address this probleBofrya. First, the user has the flexibility
to select events of interest and ignore irrelevant evengjulse features described for defining observations. Hpis t

of static control enables the exclusion of events entiffalydy are known to be irrelevant to a particular analysishwi
the benefit of an associated reduction in overhead. Seconttpts and tools are provided to filter and classify events
as they are captured and relayed to analysis tools.

Sof ya addresses the problem of efficient event processing anaigetdhrough its use of the observer pattern. A
particular analysis component that needs to work onlingliimplements an interface and then registers itself with
the event dispatcher to receive published eveBts.ya provides programmatic components to implement chains of
filters and split events into separate streams using asedaaent data (such as thread identifier or receiver object)
The process is transparent to attached listeners, enathi@sg filtered or selected event streams to be processed
independently exactly as if they were the original everdastr.

A trace file generator actually just becomes another filtettéwget”) at the end of a filter chain, that is processing
events online and recording a trace file (or files) in whatdoemat is best suited to the analysis. We believe that
recasting a trace file as just another type of subscriber tevant stream further illustrates the great flexibility of
the layered publish/subscribe architecture. The separalti these capabilities into an independent layer supports
the ability to easily implement customized event filterimgl &election mechanisms, including trace file generation,
facilitating rapid development of efficient analyses.

Concurrent event reporting. Sof ya provides solutions to address issues with both instrunientand JVMTI/JDI
approaches to reliably handling capture of events in carotisystems.

Sof ya implements a hybrid approach combining the use of instraatiem and the JDI to publish semantic events
from an observed program. Where it is not possible to obtainrate event data non-intrusively with instrumentation,
Sofya utilizes the JDI to capture such events. The JDI r&igests synchronously with the execution of corresponding
code, and guarantees the order of reported events to bestnisivith the order of execution; this addresses the
concerns associated with instrumentation. Instrumentagistill used where synchronization of probes with obasérv

11

events is not necessary for correctness. An example of ssitiegion, alluded to earlier, is a probe to observe method

entry. Such a probe can be inserted as the first code in a méthie probe has executed, the method is guaranteed to
have been entered, but no program code will have yet execfitedntext switch immediately after execution of such

a probe has no ramifications for analyses consuming the streaim. Such a hybrid technique allows instrumentation

to improve efficiency for some types of events and enablesragagon of custom events where safely possible, while

employing the JDI to satisfy the requirement of accurate;imterfering observation of events that cannot be handled
by instrumentation alone. Based on our survey of prior wadkbelieve this hybrid approach is novel and represents
a significant achievement in efficient and validity-pregggwobservation of events in concurrent systems.

Structural coverage event dispatch is inherently thredd-sThe structural sequence event dispatchers are not,
an issue we will address in future work. However, we find thataority of dynamic analyses that use structural
observations are interested in coverage data, which idysafiplemented using the efficient instrumentation-only
scheme previously discussed.

4 Survey: Dynamic Java Analyses

Recent developments involving dynamic analysis of Javgraras have involved program design, validation, verifica-
tion, profiling, security, and metric collection activsieamong others. We now survey a number of these analyses and
the tools that implement them, and discuss how they relatectcapabilities of th&of ya framework. We organize

this survey based on whether an analysisesinformation from a trace and constructs a model for later asehecks
conformance of a trace against a given model; we note thatsesamay be structured as combinations of mining and
checking phases. We also discuss a common class of minitigajyms that is concerned wigierformancenalysis.

4.1 Mining Applications

Dynamic analyses for testing and maintenance, such asageeneasurement, have been extensively investigated in
the Java research and development communities. Such asalyse program executions to accumulate information
about sets of program locations; for example, whether thieyr@ached in some program run. We describe two
frameworks for building such analyses.

INSECTJis a lightweight generic framework for instrumenting Javétware [28] that offers a relatively simple
and elegant design for performing basic instrumentatiskga Its principle contribution is a framework that hides
many details of using the underlying byte-code manipufalilorary, BCEL. Instrumentation capabilities of the type
provided by InSECTJ are all available 8of ya, and custom instrumentors can also be implemented istfiey a
framework. Unlike InsECTJ, howeveBof ya provides, as part of its core framework, existing impleragans of
complex instrumentation techniques that support a widgear analyses.

The Java Architecture for Bytecode Analy$ABA) [14] is a program analysis tool set that appéaesprovide
functionality to support the kinds of analyses offered by $kructural instrumentation and event dispatch compsnent
of Sof ya, such as control flow analyses and coverage tracing. To steobeur knowledge, JABA does not provide
support for more general dynamic analysis problems sudhoge tdescribed below.

4JABA is not publicly available and a detailed descriptioritw capabilities of the tool is not available.

12

Neither INsECTJ nor JABA consider the challenges posedstoimentation in a multithreaded context, and each
will suffer from all of the problems described in Section 2.

Daikon[10] is a toolset for detecting likely program data invat&rDaikon mines information about data values
at specific locations in a program, such as method call angirrgtoints, using th&hicory [6] front-end to target
Java programs. Daikon’s analysis phases are independéiticdry (to achieve language independence), and they
communicate through a well-defined trace file forn@f ya could be used to implement the functionality&ticory
and generate such files, but one could also structure aneovdirsion of Daikon by attaching its analysis phases as
listeners to th&of ya generated event stream, thereby saving the expense afgvpititentially large trace files.

Recent work on mining properties about sequencing relstins between sets of program locations, perhaps
distinguished by data values, has focused on inferringobigjetocol models for APIs [2, 34]. General approaches
that attempt tdearn arbitrary protocols have proven difficult to scale and theutiing models are hard to exploit.
More recent work has looked at instantiating predefinedsem®f models to help with these difficulties [33, 35].
Sof ya can capture all of the information needed to mine sequergpegifications that relate method calls, normal
and exceptional returns, field references, and other featedated to APl usage. Furth&gf ya can be configured
to capture aspects of the data state of the program at thevebsgoints;, e.g., to correlate calls based on receiver
object identity. While many tools that implement mining ofjsencing specifications work offline, one could easily
build online miners usingof ya, which offers the potential for eliminating large tracediléSection 5 discusses our
experiences implementing Weimer’s pattern mining techai@3] in Sof ya.

4.2 Checking Applications

There has been a significant amount of work using formal nsodEbehavior, developed in the program specifi-
cation and verification communities, to perfomm-time verification The models considered vary from built-in
restricted patterns to user supplied general state machime temporal logicslava PathExplorer (JPaX{)L3], Java
MultiPathExplorer(JMPaX) [29],JavaMOP[5], TGV[15], andHAWK][7] are examples that range over this space of
models. These tools vary in the mechanisms used to genetatamt events; for example, JPaX uses static instrumen-
tation and JavaMOP uses aspect oriented techniques, bhutieacuples the checking portion to a separate consumer
of the event stream and uses slightly different checkingrtegies, for example, various forms of automata in HAWK
and JPax, and vector clock techniques in JMPaX. This kincdeobdpling can be achieved in tBef ya architecture
and, in fact, several analysis techniques, such as an at#aiecker and vector clock implementation, are available
as existingSof ya components; we discuss such components in Section 5. $e¥¢hna run-time verification tools
discussed above are limited in the set of observations thayntake of the program; for example, properties that
require information about object instance identity areeneral not supported, and observing the execution of Igckin
operations with an instrumentation-only approach, as &#XJhd Java-MOP, results in the problems discussed in Sec-
tion 2. Thus, a framework lik&of ya offers the possibility of supporting a broader range of saicalysis problems,
and of improving the accuracy and validity of analysis resul

Java-MacCis a tool that implements a run-time checking of Java progragainst formal specifications [18].
Unlike the tools described above, Java-MaC employs a géwvepproach to insert instrumentation and create the
property checking monitors it uses to check conformancerd)arite specifications in a special script language that

13

defines the events to be captured and the properties to bedeThese are then compiled into instrumentation and
monitors that are incorporated into the running programlafRe to Sof ya’'s more traditional architecture, Java-
MacC relieves the user of the need to code analysis compqrmriti also makes it impossible to combine multiple
analysis components to achieve sophisticated run-timyses Furthermore, the instrumentation in Java-MaC is
very intrusive. It interferes with scheduling and incurgngficant run-time overhead, thus reducing the fidelity @& th
generated analyses as described in Section 2.

In Section 5, we describe the implementation of a simple secug property checker iBof ya. We also de-
scribe the implementation of a state-of-the-art dynamaiyais for detecting method atomicity. Our implementation
improves on the Atomizer [11] tool by incorporating suppaytanalyses such as dynamic race detection, escape
analysis, and vector clock techniques, much as Stoller asuagi&/ tool [32] does. This provides strong evidence that
Sof ya can be used to implement sophisticated analyses.

The literature contains numerous other run-time analysgading, for example, analyses to find security flaws
[22], detect concurrency anti-patterns [4], determiné cahin coverage [26], and calculate object coupling metric
[1]. In all of these cases, we were able to map the applicapatific capabilities and components onto 8od ya
framework.

4.3 Performance Analyses

Dynamic Java analysis tools that perform profiling and pemémnce data collection appear to be in wide use; we found
18 active Sourceforge projects focused on such tools. Tagsecations range in capability from simply accumulating
information about the number of occurrences of specific svgar example, calls to a specific method), to gathering
information about resource utilization, space consumedéhbtances of a type, garbage collection information, or
run-time of method activation.

Most Java profiling tools use the Java Virtual Machine Prdiilinterface (JVMPI) to capture program execution
events that are used to compile dynamic performance metiesJVMPI is a lower layer interface to the same types of
events available through the JDI; thus, the same types ot&ean be captured usiSpf ya. Sof ya is not designed
explicitly to support performance analysis applicatidng,any profiling application that simply accumulates ceuwft
events such as method invocations, object allocationsyrartsonization statements is a sim@ef ya application.
Sof ya could easily be extended to support a broader range of pesfice analyses; for example, the delivery of
timestamps with events would allow most of the timing-rethtapabilities available in existing Java tools to be
implemented a$of ya clients, and adding optional timestamp payloads is a tresgéension toSof ya’'s existing
event-generation support.

5 Sofya Applications

To evaluate the utility, flexibility, and usability &of ya we selected three analysis applications from the set sedvey
in Section 4 to implement iSof ya ourselves. The first two analyses were implemented by theafithor, who
is the developer ofof ya. The final analysis was implemented by the second authorwesonot familiar with the
architectural details or APIs &of ya. We report information from personal time-logs that we rteiimed during
the development of the two smaller analyses. While anecdemlbelieve that this information on development

14

effort provides evidence th&of ya facilitates rapid development of interesting analyses ah lexperienced and
inexperienced users of the framework.

The first application we implemented, which we discuss ingieatest detail, is a version of the reduction-based
dynamic atomicity checking algorithm described by Wang &taller [32]. This application is composed of a set
of core components to implement the logic of reduction aatiaand a set of supplementary analysis components
described in [32]. These supplementary analyses are ingpitsd to improve the precision of the atomicity checker;
however, the modular design facilitated Bpf ya enables them to function as independent analysis component
that can also be used by other analyses built on the framewbhnk second application is a simple technique for
mining (ab)* patterns from program traces presented by Weimer and N§8]Ja The third application is a finite
state automata (FSA) property checking technique thakzesilthe Propel [31] framework from the University of
Massachusetts. We conclude this section with a brief detimmi of several other dynamic (and static) analyses that
are implemented in or supported Bgf ya.

5.1 Reduction-based Atomicity Checking

Lipton [21] developed the concept adductionas a

means for simplifying reasoning about the correct-]

Y

Layer 5

p
.) EventFilter
ness of parallel programs. The key concept in reduc- SemanticEvent

Dispatcher

tion is to determine whether the effects of all activa-

EventListener

tions of a given method in all parallel program execu-

tions are equivalent to the effects of some sequential

activation of the method; such a method is said to

beatomic Intuitively, method atomicity captures the
Automata¢ontro|ler

Layer 6

informal notion ofthread safetythat is often a goal

|
in developing Java components. Method atomicity [AUtoma‘aFaC‘OE}
for Java has garnered interest in recent years due to

work by Flanagan and colleagues [11, 12] in develop-
ing both static and dynamic analyses to reason about
method atomicity.

We focus on the recent work of Wang and

DynamicEscapd

Stoller [32], who have developed a state-of-the-art Detector

dynamic analysis for method atomicity. More specif- Supplementary Analyses

ically, we focus on their reduction-based analysis.
The idea behind all reduction-based reasoning is that Figure 3: Atomicity Checker Architecture

all actions performed by a method can be classified

as one of four types of operations. Using this classificasicimeeme, if the sequence of actions in a method satisfies
a particular regular expression, the method is judged totdmmia. Abstractly the regular expression enforces two
requirements on the execution of a method: (1) the methodatdre involved in any data races, and (2) the method
must be able to run to completion without requiring exeautibanother thread; we refer the reader to [32] for details.

15

5.1.1 Implementation

Figure 3 presents the architectureSuff ya’'s atomicity checker; solid edges with triangular headsdatd interface
implementation or class extension, solid edges with diaimoead indicate instance creation, and directed dashed
edges indicate data flow. Conceptually, the checker canviedi into itscorecomponents and a setsdipplementary
analyseghat are used to boost precision.

The core components are responsible for classifying obdepvogram events and matching event streams for
methods to the regular expression indicating atomicity. Bwent Cl assi fi er maps events received from the
Semant i cEvent Di spat cher as one of four symbols, denoting the classifications in tpaabet of the regu-
lar expression. ArRBAut onat a class instance matches symbols from the event stream tegoudar expression
for a method activation. Théut omat aCont r ol | er observes the event stream, starting and stopping individ-
ual automata on method entry and exit. Events are forwardexttive RBAut omat a, which request classifica-
tion from theEvent Cl assi fi er, or in certain cases classify the events themselves to dtate transitions. A
Resul t Col | ect or merges the final states of all automata executed for eachochethi all instances of the au-
tomata for a given method reached an accept state, the mistheygbrted as atomic.

These components are configured and connected by a main dn@tbbshown) that consists mostly of stan-
dard code used by analyses implemented on the semanticdispatch components. The application specific parts
of this involve creating @ef aul t Event d assi fi er, which classifies events using simple heuristics, and an
Aut omat aCont r ol | er, and registering them &y ent Li st ener s with theSenant i cEvent Di spat cher.

5.1.2 Supplementary Analyses

Even a basic implementation of the reduction-based autostaditegy for dynamic atomicity checking effectively
reveals atomicity errors in programs [11]. Wang and Stallscuss three supporting dynamic analyses, each of which
can improve the precision of the analysis to reduce the fdtds® negative reports (that is, atomic methods reported
as being non-atomic). The first author also implementedimessof these supporting analyses, and we overview
their implementations below; we defer a number of detaikhefimplementations to their documentation, available at
http://sofya.unl. edu.

Each analysis is implemented as an independent compongaf ya. They are combined with the core analysis,
using Sof ya’s event-listener framework, to produce an atomicity asialyhat is comparable in terms of precision
and performance to the one described in [32]. We believettieatbility to create these different analyses, each of
which is interesting in its own right, and make them ava#adod building blocks for other analyses built usBaf ya,
illustrates the ability ofSof ya'’s architecture to promote reuse and thereby reduce dawelopeffort.

Dynamic Escape Analysisost interesting data manipulated by Java programs isctam the heap. The default
atomicity classification pessimistically assumes thatiallesses to heap data are visible to multiple threads, but if
one can determine that a heap-access influences a singhel tiirean be classified differently, improving analysis
precision. We implemented the dynamic escape detectiaritdgn described in [32], which considers an object
escaped if it is assigned to a static field or already escapedtp passed as an argument to a native method, or used
as the runnable target of a new thread. Oynam cEscapeDet ect or analysis component subscribes to receive
events from th&enmant i cEvent Di spat cher and monitors for these conditions. The escape detectouunsgse

16

identifiers, assigned by the framework to each observeapligerecord escaped objects and provide a query method
to check whether the object with a given ID is escaped.

Multi-lockset Analysis a heap object that is judged to escape a thread is not neibeseaessible to multiple
threads concurrently. Multi-threaded Java programs contyngse a locking discipline to ensure coherent access to
shared heap structures. The lockset algorithm attemptstéardine whether any concurrent read and write accesses
to a field are not protected by a common lock. It is sufficiemate that a lockset algorithm can be implemented if
it is possible to determine the locks held by a thread wheadésses or modifies a field. Locks in Java are built into
each object; thusSof ya can uniquely identify each lock using the object identifiear any eventSof ya is able
to report the locks held by the thread at the time of the ewehich allows theMul t i Lockset RaceDet ect or
analysis to be implemented as a subscriber to the semasetit stveam.

Happens-before Analysigust because a heap object is not lock-protected does na that it is accessed by
multiple threads concurrently. Synchronization betwéeeads that is unrelated to the shared heap object may imply a
strict ordering on accesses from those threads. A happsfiosetanalysis attempts to determine whether two accesses
to a field involving at least one write access can be conctirr€he analysis uses information about when threads
start and join each other to decide whether field accessgmasibly concurrent, and can be extended to account for
ordering imposed by the use of lock waits and notifies.

Wang and Stoller describe a technique for implementing adag-before analysis using directed acyclic graphs,
but they point out that a more efficient implementation usiecgtor clocks may be possible [32]. We implemented this
improvement by adapting O’Callahan and Choi’s [23] hybidited happens-before algorithm using vector clocks.
TheHappensBef or eChecker analysis is implemented as a subscriber to the semantit giveam. Vector clocks
are created and updated on each thread start or join evenea€infield access, the vector clocks for live threads
are associated with that field. It is then possible to pro@deaethod to query whether a field access is potentially
concurrent with any access to the same field.

5.2 Mining Temporal Specifications

Weimer and Necula [33] presented a heuristic for mining sntgmporal patterns of the forfab)«; that is, patterns
that specify that: actions and actions occur in matching pairs. The classic example of aygdttern is the intended
sequencing obpen andcl ose operations on a file. Their observation was thatittevents are likely to be repre-
sented in exception handling code. If such a pattern existgresence will be attested to by the programmer’s concern
in assuring that thé always gets executed, even in the face of exceptional pmobehavior. For the purposes of this
analysis, candidate events are always method calls.

Mining for these patterns using this heuristic involvesthsteps. First, the analysis must identify method calls
that are in exception handling sections of the code. We ausitnple parser, using the parser generator ANTLR [24]
and a grammar for Java 1.5 source code [16]. The grammar waanmented to identify calls occurring aat ch
andf i nal | y blocks, so that the parser can output a file containing aflistich calls. Second, we create®af ya
application that inputs the file produced by the parser, as¢imevent specification that activates observation dfcal
and the program to be observed, and uses the semantic espatdier to run the program. Call events are dispatched
to an analysis component that uses the list of “cleanup’sdallbuild a set of candidatéh patterns. In the third

17

Analysis Developer Learn Learn Design Total LQC
Sofya Other +Impl. [17]

(ab)x lead dev. 0:00 2:08 6:12 820 223
FSA 2nd author 2:30 1:53 1:58 6:25 160
OSFSA 2ndauthor 0:32 0:00 0:33 1:.05 149

Table 1: Analysis Development Time (hours:minutes)
step, heuristics are used to screen the set of patterngedporusers; we did not implement the screening techniques
described in the paper, as they are not central to assebsinglue ofSof ya in implementing this analysis.

Table 1 reports the time recorded by thaddeveloper ofSof ya to build the(ab)+ analysis? The time is broken
down into time spenearning Sofyawhich for the lead developer was 0, time splearning othertools, which in this
case was ANTLRdesign and implementatidime, andotal time. The final column in the table reports non-comment
source lines of code for tHeof ya related portions of the analysis implementations.

5.3 FSA Property Checking with Propel

Tools for checking conformance of execution traces withtdhstate automata (FSA) specifications have been devel-
oped by a number of researchers. Such tools require supgpastdating the specification, mapping the transitions
automata onto program actions, tracking the state of thenzath along a program execution, and rendering a verdict
about conformance.

We used the Propel [31] tool to create FSA specificationspétioas many advantages over existing approaches
for creating such specifications, and it makes use of a riderying framework for creating, manipulating, and
serializing finite-state automata. In Propel we can defimegample, an alphabet of symbols of the form
Cl assNane:Met hodNarme that are used to construct specifications of legal sequeasfo&BI calls; these symbols
are also used to generate EDL fof ya. Once we have defined the structure of the desired call seqaeRropel
encodes those sequences as an FSA.

We implemented two versions of a dynamic FSA conformancelarein Sofya: per-threadand per-receiver-
objectcheckers; we refer to the latter as @nject-sensitivé-SA checker (OSFSA). Both checkers implement a sub-
type of Event Sel ect i onFi | t er that handles calls on the methods and classes encoded itharil triggers
the appropriate transitions in the FSA; each instance af shb-type stores the current FSA state reached by the
sequence of calls.

The per-thread checker applieSlar eadFi | t er to the raw event stream to split the stream into separate even
streams for each active thread in the system.E&xent Sel ecti onFi | t er instance is generated for each thread
and chained to the output of the thread filter; thus, the ssrjng constraint of the FSA is checked against the calls
produced by each thread separately. An error is indicatadyifthread’s call sequence ends in a non-accepting FSA
state. The object-sensitive checker applieSajnect Fi | t er to the raw event stream to split the stream into separate
event streams for each distinct allocated object in theegysBy minimizing the EDL specification, only instances
of classes named in the FSA alphabet will ever have eventsrged for them. As above, an error is indicated if

5We do not report a time log for the atomicity application beedtas was initially built on an older version of tBef ya API that experienced
changes concurrent with its development.

18

the sequence of calls on any object instance ends in a hapifing FSA state. The resulting checker is capable
of detecting API usage errors arising from improper synatzation.

The FSA and OSFSA analyses were implemented by the seconaraiftthe paper. Previously, this author had
looked at neither th&of ya nor thePr opel APIs. Furthermore, the author’s understanding of the grchire of
Sof ya at that time was probably less well-developed than what efglreader of this paper will garner. As one
would expect, this developer had to spend a non-trivial arhofitime learning thé&of ya APIs.

Due in part to the fact that the FSA checker is a fundamensidhpler analysis than th@b)+ miner, and to the
fact that the author was able to use fla®)« miner as a model for implementation, the development tirmetHis
analysis was quite small. The additional time needed toldpwhe OSFSA checker was very short, indicating that
knowledge ofSof ya’s architecture and components can allow analysis variartte developed very quickly.

5.4 Overview of Other Applications

A variety of other applications and analyses have been dped| a number of which use the structural event dispatch
components oBof ya, some of which we provide wit&of ya. Most originate as applications built @l i | eo,
an older tool set from whicBof ya evolved.

Dej aVu is a tool for regression test selection in Java. Test selectses change information between versions of
a software system to select test cases that exercise thasgesh This is accomplished by executing the test cases for
a version of the system and recording the structural coeesagieved by those test cases. Coverage information from
the test suite is used to determine which test cases covegetiaode and those test cases are selectedj@bhVu
uses the basic block instrumentation and event dispatclpaoemts, thus serving as an example of a sophisticated
testing technique implemented using the structural evisptatch capabilities dbof ya.

Structural event dispatch componentsSof ya have been used to implement and evaluate test case patdtiz
techniques [8] and dynamic impact analysis techniques [2Z8%t case prioritization is another widely investigated
regression testing technique that seeks to reorder tésssuwich that test cases with the highest probability of @rgo
faults are executed first. Dynamic impact analysis, whiasuke structural sequence tracing capabilitieSaifya,
seeks to determine and report how changes to one part of eapnampact other parts of the same program.

Finally, Sof ya provides implementations of advanced static type infex¢éachniques for exceptional control flow
[19], based on interpretations of algorithms for varying tiosts of analyses against the precision of resulting aontr
flow representations [30]. This offers advanced capadslitin Layer 1 that allow clients of the structural event dispa
components of the framework to choose tradeoffs betweelysis@ost and precision. To the authors’ knowledge,
these are the only publicly available implementations @sthalgorithms, offering the possibility of precision in
control flow based analyses not achievable in other tool sets

6 Conclusions and Future Work

Dynamic analysis tools and techniques are important toridetige of software engineering. They are applied to a wide
variety of problems, and improve practitioners’ confideic¢he correctness, security, performance, and relighbilit
of software systems. They are also rapidly gaining impaedior their ability to contribute to the solution of hard
problems in static analysis, and vice versa. Thus it becawes more important that the community have access

19

to a framework to facilitate the implementation, evaluatiand comparison of new dynamic analysis techniques
— a framework that relieves researchers and practitiorfetiseochallenges inherent in constructing robust, reliable
dynamic analysis tools for Java software, including miilteaded software. We believe tHaaf ya provides just
such a framework for enhancing and driving forward the stditdhe art in dynamic program analysis in software
engineering.Sof ya addresses these challenges with an architecture thatetissthe solutions behind expressive
interfaces, and we have demonstrated the effectivenebe dfamework with example applications.

There are areas of extension$of ya that we intend to pursue in future work. We would particyldike to
pursue avenues for dynamic instrumentation removal, whgeh a capability is appropriate, and new additions to the
Java language hold strong promise in this area. As the JOlnt@s to evolve with new releases, we will continue
to explore ways to exploit this functionality to support nemd improved, handling of events. Such changes will
improve the flexibility and performance of the framework.

We are makingsof ya available to the public, with examples, tutorials, and egiee APl documentation. Current
information onSof ya can be found aht t p: // sof ya. unl . edu. It is our hope that this will facilitate rapid
development of new dynamic analysis tools and techniqued,emcourage more frequent and reliable empirical
investigation and comparison of such tools and technigBg®nabling researchers and practitioners to more readily
consider evaluation and comparison of proposed techniquebelieve this will accelerate advances in the state of
the art in dynamic program analysis and thus enable moreasjge delivery of new techniques that will improve the
reliability of all software.

Acknowledgments

This work was supported in part by the NSF through awards D4290444167 and 0454203. We thank Scott Stoller,
Ligiang Wang, and Westley Weimer for answering questiomsiithe analyses they built. We thank Rachel Cobleigh,
Ricky Chang and Nathan Jokel for answering questions abopiePand the UMass FSA package.

References

[1] Aine Mitchell and J. F. Power. An empirical investigationtdrthe dimensions of run-time coupling in Java
programs. Irint’l. Symp. Princ. Pract. Prog. Javgages 9-14, 2004.

[2] G. Ammons, R. Boik, and J. R. Larus. Mining specifications. $ymp. Princ. Prog. Lang2002.
[3] http://jakarta.apache.org/bcel.

[4] S. Boroday, A. Petrenko, J. Singh, and H. Hallal. Dynami@lysis of Java applications for multithreaded
antipatterns. Iint’l. W. Dyn. Anal, 2005.

[5] F.Chen and G. Rosu. Java-MOP: A monitoring orientedypimming environment for Java. Int’l. Conf. Tools
Alg. Const. Anal. SysLNCS, 2005.

[6] http://pag.csail.mit.edu/daikon/download/
doc/daikon.html#Chicory.

20

[7] M. dAmorim and K. Havelund. Event-based runtime veufion of Java programs. Imt’l. W. Dyn. Anal,
2005.

[8] H. Do, G. Rothermel, and A. Kinneer. Prioritizing JUnést cases: An empirical assessment and cost-benefits
analysis.Emp. Softw. Eng11(1):33-70, 2006.

[9] Eric Bruneton, R. Lenglet, and T. Coupaye. ASM: A code malaigion tool to implement adaptable systems. In
J. Composants 2002 : Sgshesa composants adaptables et extensibimy. 2002.

[10] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.yBamically discovering likely program invariants to
support program evolutionEEE Trans. Softw. Eng27(2):99-123, 2001.

[11] C. Flanagan and S. N. Freund. Atomizer: a dynamic atiynahecker for multithreaded programs. 8ymp.
Princ. Prog. Lang, pages 256-267, 2004.

[12] C. Flanagan and S. Qadeer. A type and effect systemdamiaity. In Conf. on Prog. Lang. Design ImpR003.

[13] K. Havelund and G. Rosu. An overview of the runtime fiedtion tool Java PathExploreFormal Meth. Sys.
Design 24(2):189-215, 2004.

[14] http://gamma.cc.gatech.edu/jaba.html.

[15] C. Jard and T. Jeron. TGV: Theory, principles and atpons. Int'l. J. Softw. Tools Tech. Transi(4):297-315,
Aug 2005.

[16] http://www.antlr.org/grammar/1090713067533/irdeml.
[17] http:/iwww.kclee.de/clemens/javal/javancss.

[18] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. V. Sagl Java-MaC: A run-time assurance approach for
Java programg-ormal Meth. Sys. Desig24(2):129-155, 2004.

[19] A. Kinneer and G. Rothermel. Assessing the Cost-BenefitJsing Type Inference Algorithms to Improve the
Representation of Exceptional Control Flow in Java. TechirfiReport TR-UNL-CSE-2005-0002, University of
Nebraska - Lincoln, May 2005.

[20] J. Law and G. Rothermel. Whole program path-based dynmanpact analysis. lint'l. Conf. Softw. Eng.2003.

[21] R. J. Lipton. Reduction: A method of proving propertaarallel programsComm. ACM 18(12):717-721,
1975.

[22] M. Martin, B. Livshits, and M. S. Lam. Finding applicati errors and security flaws using PQL: a program
query language. I€onf. O.0. Prog., Sys., Lang., and Apjplages 365—-383, 2005.

[23] R. O’Callahan and J.-D. Choi. Hybrid dynamic data raetedtion. InSymp. Princ. Prac. Par. Prog2003.

[24] T. Parr and R. Quong. ANTLR: A predicated LL(K) parsenggator.Soft. Prac. Exp.25:789, July 1995.

21

[25] G. Rothermel and M. J. Harrold. A safe, efficient regi@ssest selection techniquéACM Trans. Softw. Eng.
Meth, 6(2):173-210, 1997.

[26] A. Rountev, S. Kagan, and M. Gibas. Static and dynamadyesis of call chains in Java. Imt'l. Symp. Softw.
Test. Anal.pages 1-11, 2004.

[27] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, andriiekson. Eraser: A dynamic data race detector for
multithreaded program#\CM Trans. Comp. Sysl5(4):391-411, 1997.

[28] A. Seesing and A. Orso. InseECTJ: A generic instruméoatramework for collecting dynamic information
within Eclipse. InW. Eclipse Tech. eXchang&05.

[29] K. Sen, G. Rosu, and G. Agha. Runtime safety analysmsudfithreaded programs. Bymp. Found. Softw. Eng.
pages 337-346, 2003.

[30] S. Sinha and M. J. Harrold. Analysis and testing of pangs with exception handling constructEEE Trans.
Softw. Eng.26(9):849-871, 2000.

[31] R. L. Smith, G. S. Avrunin, L. A. Clarke, and L. J. OsteilvePROPEL: An approach supporting property
elucidation. Inint’l. Conf. Softw. Eng.pages 11-21, 2002.

[32] L. Wang and S. D. Stoller. Runtime analysis of atomiditlymulti-threaded program$EEE Trans. Softw. Eng.
32:93-110, Feb 2006.

[33] W. Weimer and G. Necula. Mining temporal specificatiémserror detection. IrConf. Tools Alg. Constr. Anal.
Sys, pages 461-476, April 2005.

[34] J. Whaley, M. C. Martin, and M. S. Lam. Automatic extractiof object-oriented component interfacesirtil.
Symp. Softw. Test. Anghages 218-228, 2002.

[35] J. Yang, D. Bhardwaj, T. Bhat, and M. Das. Perracottaniklj temporal API rules from imperfect traces. In
Int’l. Conf. Softw. Eng.2006 (to appear).

22

