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Abstract

Dynamic analysis techniques are well established in the software engineering community as methods for vali-
dating, understanding, maintaining, and improving programs. Generally, this class of techniques requires developers
to instrument programs to generate events that capture, orobserve, relevant features of program execution. Streams
of these events are then processed to achieve the goals of the dynamic analysis. The lack of high-level tools for
defining program observations, automating their mapping to efficient low-level implementations, and supporting the
flexible combination of different event-stream-based processing components hampers the development and evaluation
of new dynamic analysis techniques. For example, mapping non-trivialprogram observations to existing low-level
instrumentation facilities is a time-consuming and error-prone process that can easily result in poorly performing
analyses.

In this paper, we presentSofya - a framework that we have developed for building dynamic analysis tools. We
describe the architecture ofSofya, and explain how it meets the challenges faced by developers of a wide-range
of dynamic analyses. We survey existing dynamic analysis tools to show how they relate to the capabilities of the
Sofya framework, and we show howSofya improves on their shortcomings. Finally, to illustrate the flexibility
and effectiveness of the framework, we describe our experiencesdeveloping several state-of-the-art dynamic analyses
usingSofya.

1 Introduction

Many interesting problems in program verification and validation concern observing, abstracting, and modeling the

behaviors programs exhibit during execution. Dynamic program analyses, which consider the execution behavior of

selected program runs, are a powerful complement to traditional testing techniques. Whereas testing typically focuses

on the relationship between a program’s inputs and outputs,dynamic analyses are usually formulated to focus on the

internal workings of a program. This allows them to detect patterns of behavior that can be abstracted and related to

models, such as invariants [10], automata [2], coverage data [20, 25] or sufficient conditions for data races [27], in

order to characterize program behavior, detect errors on anobserved program run, or predict potential errors that may

be exhibited on other program runs.

The most common application of dynamic analysis is to performance and memory profiling, but researchers have

also exploited run-time monitoring to target a much wider range of program analysis applications. Broadly speaking, a
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dynamic program analysis can be thought of as either a property checker, which compares observed program behavior

to a given model, or a propertyminer, which extracts a model of observed program behavior. Runtime property

checking has a long and rich history. Developed initially asa means for understanding and debugging distributed

programs, over time it has evolved from checking propertiesof single program states, such as array bounds and

null references, to checking properties that relate to multiple program locations, such as data races [27] and method

atomicity [12, 32], and also to approaches that are parameterized by rich user supplied sequencing specifications

[7, 13, 15, 18]. Sophisticated approaches to mining specifications have been a subject of research in recent years,

resulting in tools for inferring program data invariants [10], temporal relationships between program actions [35], and

object protocols [2, 34].

Implementing a dynamic program analysis for modern object-oriented languages, such as Java, presents a number

of challenges. Different analysis tools address these challenges through different techniques and implementation

strategies; consequently, we consider these challenges aspoints of variationin the space of possible dynamic Java

analyses. We identify four major points of variation:

Program observations. Analyses may require very different information about program execution. Some analyses

may be sensitive only to the occurrence of certain program events, i.e., for Java programs an event can be mapped to

a class of byte-codes, whereas other analyses may require detailed information about the data state of the program.A

flexible analysis framework must support the definition of a wide-range of observations of program behavior.

Efficient event generation.The raw material of all dynamic analyses is a stream of eventsthat reflects the sequenc-

ing of actions and states encountered during a program run. Generating events and delivering them to the analysis

implementations can slow down program execution by orders of magnitude if care is not taken.An efficient analysis

framework must build on an array of optimization strategiesfor minimizing the overhead of event generation.

Selective event processing.Sophisticated program analysis problems often require that multiple sub-problems be

solved and their results combined. Teasing a raw event stream apart and directing the relevant portions to each sub-

problem while maintaining the independence of sub-problemimplementations is a challenge in itself. Achieving

this while maintaining an acceptable bound on the use of storage for analysis information is even more difficult.A

rich analysis framework must provide a generic and modular architecture for assembling complex combinations of

sub-analyses.

Concurrent event reporting. Dynamic analysis of multi-threaded Java programs is complicated by the fact that the

implementation of synchronization operations is embeddedwithin the JVM. This makes it difficult to provide high-

fidelity event generation for operations such as lock acquisition and release in a manner that does not perturb thread

scheduling, is portable across JVMs, and is efficient.A dynamic analysis framework for multi-threaded programs must

provide state-of-the-art strategies for generating synchronization related program events.

To date, implementors of dynamic analysis tools have created such tools independently, with little thought given

to reuse or comparability. While low-level frameworks such as the Byte Code Engineering Library (BCEL) [3] and

ASM [9] provide infrastructure for implementing such efforts, they do not provide the high-level functionality required

by many dynamic program analyses. Consequently, researchers have been forced to build that functionality on their

own and have not, therefore, effectively leveraged each others’ efforts. This not only increases the time required to

implement analyses, but also the likelihood that common errors or inefficiencies will be introduced into analyses.

2



Beyond the problems increatingdynamic analysis tools, variation in implementation strategies across different

dynamic analyses makes it difficult tocompare and evaluate the cost-effectivenessof specific analysis algorithms

and data structures. For example, Wang and Stoller [32] propose two very different algorithms for dynamic method

atomicity analysis; if these algorithms had not been implemented in the same framework it would be difficult for

researchers to empirically isolate differences in the algorithms from differences in implementation frameworks.

To address the foregoing problems, we have created (Sofya): a framework that supports the development of a

wide range of sophisticated dynamic analyses for Java programs, which is available athttp://sofya.unl.edu.

Sofya offers several advantages to developers of dynamic Java program analyses. First,Sofya is designed to

provide efficient and flexible solutions for each of the challenges listed above, and thus to support a broad range of

dynamic analyses. Next,Sofya is architected to foster reuse of its core components as wellas components that are

integrated into the framework by analysis developers. Thus, Sofya offers the potential for reduced development time

and run-time overhead, along with increased correctness ofdynamic program analyses. Finally,Sofya provides an

architecture into which multiple analysis techniques can be easily integrated. Thus,Sofya facilitates experimentation

aimed at understanding the relative cost-effectiveness ofdynamic analysis algorithms and data structures.

In the next section, we discuss the challenges faced when implementing dynamic analysis techniques in Java.

Section 3 presents the architecture ofSofya and details the ways in which those challenges are addressed. Section

4 surveys the wide variety of analyses that are of interest tothe program analysis community, and explains how their

requirements are met bySofya. Section 5 presents three example dynamic analyses from thesurveyed applications

that we implemented using theSofya framework. We discuss our experiences developing these applications and

quantify the effort required to build them in the context ofSofya. Finally, Section 6 summarizes the current state of

Sofya, and plans for extending it.

2 Dynamic Analysis Challenges

The ability to observe program execution is fundamental to all dynamic program analyses. Events that need to be cap-

tured range from the simple, such as execution of structuralentities (for example basic blocks), to the more complex,

such as thread and object creation, field manipulations, andobject locking behavior. Monitoring for events in Java

software is most often achieved through instrumentation ofbyte-code, predominantly static instrumentation. However,

the strict verification rules for Java class files and the stack architecture of Java byte-code can make the implemen-

tation of instrumentation difficult and error prone. Also, poorly designed instrumentation introduces performance

overhead, and suffers from limitations that can affect analysis correctness, especially in a multi-threaded environment.

Event capture based on the the Java Virtual Machine Tool Interface (JVMTI)1 or Java Debug Interface (JDI) are also

sometimes employed, but these too introduce challenges.

The event streams resulting from observed execution of systems are often long and complex. This can be espe-

cially problematic in multi-threaded systems where eventsin different threads may be arbitrarily interleaved. These

issues lead to significant challenges in interpreting and storing event stream data when implementing dynamic analy-

sis techniques. For example, trace files may be too large to store or process efficiently, or a technique might need to

differentiate between events occurring in different threads.

1Previously the Java Virtual Machine Profiling Interface (JVMPI).
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In the remainder of this section, we present detailed discussions of the challenges related to definition of program

observations, byte-code instrumentation, event capture,storage, filtering and processing, especially as they pertain to

multi-threaded systems.

Program observations. Specifying events in a program that are considered observations of interest is an important

task in implementing a dynamic analysis. It is desirable to eliminate the dispatch of irrelevant events at the earli-

est opportunity to minimize overhead and maximize analysisefficiency. Ideally, an analysis implementation should

constrain the instrumentation and the request of events from the JDI to the minimal amount necessary to capture the

desired observations. In this way, no overhead is introduced for events that are irrelevant to the analysis. Specification

of events should be clear and understandable, separating the definition of observables from details of the implemen-

tation required to generate the associated events. As the complexity of observations increase, notations for specifying

them must become more expressive to support natural description of both the observations of interest and where the

associated events can occur.

Existing libraries and tools such as BCEL are often used to implement instrumentation of Java class files. Such

tools can meet the objective of minimizing instrumentation, but they require intimate knowledge of the construction

of Java class files and the byte-code instruction set. This imposes a steep learning curve, setting the stage for the other

challenges we discuss in the following sections, and leading to repetition of common errors. These tools require that

program observations be defined in terms of the instrumentation implementation required to generate them (which

may not be the best, or only, implementation that can be used). As a consequence, they do not satisfy the requirement

that specification of observable events should be clear, understandable, and independent of implementation details.

Many analysis tools build on libraries such as BCEL to generate the program observations they require. This

approach causes researchers and implementors to embed the specification of desired observations within the imple-

mentation logic of their tools. The result is that encodingsof observations then become difficult to reuse for other

purposes, or even to modify for new extensions to the original analysis.

As an example, consider two analysis applications (for pattern mining and property checking) that we discuss in

Section 5 – both analyses require similar information, in this case about call events, but they differ with respect to

where in the program they need to observe such events and whattype of information they need to extract about the

method calls. In a traditional approach, we would have to implement an instrumentor and event dispatch components

for one analysis, then modify or create new implementationsof these components customized to the second analysis.

In summary, implementors of new analyses are faced with two costly alternatives: spend the time necessary to

understand and modify an existing tool used for some previous analysis (which may itself contain errors), or use a

library such as BCEL to construct the analysis from scratch (and likely repeat common mistakes). To our knowledge,

no tools or frameworks exist to bridge the gap between powerful yet difficult to use libraries and tools, such as BCEL

and the JDI, and the task of specifying desired observationsneeded to implement interesting dynamic analyses.

Efficient event generation. All instrumentation has an associated cost. The extra overhead introduced at runtime

is often an important consideration when performing a dynamic analysis and evaluating its usefulness. Standard

practice in Java is to implement instrumentation probes as method calls to a special class, that in turn emits trace

data or collects the events and produces a summarization. This is often sufficient, particularly for smaller systems

and collection of infrequently occurring events. Unfortunately, for large volumes of events (such as those seen when
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observing execution of structural entities) this approachcan introduce intolerable overhead. Systems with frequently

executing or deeply nested loops, or many threads, are especially susceptible to such overhead. For example, in an

early implementation ofSofya that used this strategy, a program with three-deep nested loops was observed to suffer

upwards of a 250x slowdown when instrumented.

Another challenge for efficiency and correctness is how to enable observation of an entire system in a way that

does not interfere with its execution environment. Specifically, there are multiple issues involved in providing for

communication between instrumentation probes that are executed by the program to generate events and the analysis

components that process events. One technique that was attempted in an early version ofSofya is to invoke a

system by executing themain method of the appropriate class using Java reflection. Unfortunately this technique

does not result in the system running in its normal executioncontext, as it is now running within the same JVM

as the analysis components. This forces both to compete for the same resources, such as memory, and can lead to

problems in the observed system and in the analysis components (such as when the system under observation calls

Java’sSystem.exit method). If the observed system is executed in a separate JVM, other issues arise, such as

providing efficient interprocess communication, controlling the observed system, capturing outputs, and ensuring

orderly termination without loss of observed events.

Selective event processing.Dynamic analyses frequently benefit from, and often require, the ability to filter or classify

runtime events occurring in the system based on type or context. For example, an analysis might need to differentiate

events by their executing threads, or the identity of the objects on which they act or occur. It might even need to change

its filtering criteria based on prior observed events. Techniques are frequently implemented using post-processing on

monolithic traces in which actions of different threads areinterleaved. A significant cost is associated with recovering

the event streams for individual threads, as well as the space required to store large concurrent traces. In some cases,

information about threads may even be unrecoverable, significantly reducing the precision of an analysis.

A common approach is to collect trace files and apply the analysis as a post-processing step. However, this can be

impractical (and inefficient) when there are many traces to be collected or traces are very large. We have experimented

with techniques that can generate multiple trace files larger than 2 GB [20] (before many of the current features of

Sofya were available). Most often, this is because the technique for capturing events lacks the flexibility to perform

filtering and classification tasks during execution.

Different analyses may benefit from performing processing “online”, as events are received, whereas others may

require the collection of trace files for post-processing. Most dynamic analyses implemented today generate a trace

file in a fixed format convenient for the analysis in question,or consume events in a way that is integrated into the

analysis components. Both of these approaches inhibit reuse and make such implementations unsuitable as general

frameworks for implementing other analyses.

Concurrent event reporting. The greatest challenge that limits instrumentation is thatof observing events in multi-

threaded systems. A majority of analyses for concurrent systems are sensitive to the order of events observed in

the programs, and the validity of claims derived from such analyses is greatest when the natural order of events in

the program is best preserved. Thus, techniques for observing events should avoid perturbing the natural order of

events in the system, yet report the ordering faithfully. Unfortunately, it is often difficult to achieve these goals with

instrumentation alone.
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Instrumentation involves insertion of additional executable code, which is itself executed by the threads in the

program under observation. As a consequence, execution of instrumentation is subject to interruptions caused by

context switches between threads, a situation that can cause the execution of a probe to be separated from the event

it is intended to report. The resulting event stream will notthen faithfully reflect the order of events that occurred,

and in the worst case can lead to reported sequences of eventsthat are invalid. This problem is almost always solved

by protecting, with a global lock, the execution of probes and code corresponding to the event to be reported. The

mutual exclusion enforced by the lock does guarantee that any event witnessed by instrumentation will occur before

another event may be witnessed. However, this technique is intrusive; it disrupts the natural ordering of events in the

program under observation, and incurs a severe performancepenalty as the instrumented program spends much of its

time contending for the lock to execute instrumentation.

As previously noted, services such as the JVMTI or JDI are sometimes utilized to avoid the problems associated

with instrumentation. These services provide facilities for requesting and receiving events relevant to program exe-

cution directly from the Java virtual machine in which the observed software is running. This approach does avoid

many of the problems associated with instrumentation, but it has limitations of its own. The JVMTI is a native code

interface, which results in platform specific analysis tools and imposes a high learning curve on users. Both services

constrain analyses to working with a limited set of events, and they are not easily extended due to their dependence on

the capabilities of the virtual machine. Finally, they are targeted at performance profiling and traditional debugging,

and as a consequence often lack support for finer grained selection of events, which leads to unnecessary performance

degradation.

To illustrate this point, we consider the case of observing method entry events with the JDI. When these events are

requested from the JDI, a discrete event is raised for every method called. A facility is provided in the JDI to filter

calls, but the filtering occurs in the receiver of the JDI event stream, not the observed program. Thus every event is

transmitted through slow interprocess communication channels, even if the event is not ultimately consumed. This

cost is doubled if method exit events are also observed. We observed this to yield inferior performance compared to

techniques that use probes to raise events only for method calls of interest.

3 Sofya Overview

We now present our framework for supporting dynamic analysis. We first describe the high level architecture of

Sofya to provide a basic understanding of how typical dynamic analysis implementations make use of the frame-

work. We then revisit the challenges described in the previous section, and discuss how various components of the

framework address them. This discussion shows howSofya both relieves practitioners of the difficulty of dealing

with these challenges, and does so through abstraction of details into a clear and simple publish/subscribe architecture

that facilitates rapid implementation of new analyses.

3.1 Architecture

Sofya is organized as a layered publish/subscribe architecture,illustrated in Figure 1. These layers can be grouped

conceptually to identify the broader services they provide. Note that in software design, a publish/subscribe model is

typically realized through use of theOBSERVERpattern, and this is the approach we took withSofya. A component
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Figure 1: Sofya Layered Architecture.

that publishes events is adispatcher, and a component that subscribes to events implements alistenerinterface. Thus,

when referring to implementation components, these are theterms that we use. Layers 1 through 4 support the

publishingof events to observers; Layer 4 is important as the layer at which clients maysubscribefor events. Layer

5 supportsrouting and filtering of events. Layer 6 is the client application layer, where events for which clients

have subscribed are consumed to implement particular analyses. We give a brief overview of each layer’s individual

functions, and then discuss them in additional detail.

Layer 1 is composed of optional static analyses that provideinformation to guide the instrumentation process.

Layer 2 handles the instrumentation of Java class byte-codeto support generation of event streams. Layer 3 is the

communication layer that provides transmission of instrumentation probes and JDI events from the monitored system

to the event dispatchers. Layer 4 is the event dispatch layerwhere events are packaged and dispatched to observers; this

layer defines the principle interfaces to be used by clients of the framework. Layer 5 provides classes and interfaces to

support filtering and splitting event streams based on criteria such as thread and object identity. Layer 6 is purely an

abstraction, to represent the layer at which analyses are implemented on top of the services provided by Layers 4 and

5.

Layer 1: The static analysis layer is used to implement analyses that are necessary to support event dispatch, or

that provide guidance to other layers, especially the instrumentation layer (Layer 2). Information computed in

this layer may improve the efficiency of the framework in other layers, or facilitate more precise results for some
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analyses. The main implementation provided bySofya at this layer is the control flow analysis supplied to the

BlockInstrumentor (basic block) andBranchInstrumentor components to implement structural instru-

mentation and event dispatch.

Layer 2: This is the layer at which byte-code instrumentation is performed. All of the event dispatchers (at Layer

4) provided bySofya depend on the use of instrumentation. Instrumentors inSofya extend from the abstract base

classInstrumentor and are built using BCEL. They may rely on information provided by Layer 1 or internalized

knowledge to insertprobesin the program to raise some or all of the events that will be dispatched in Layer 4. They

are also responsible for inserting any instrumentation required to establish Layer 3 communication, using the JDI or

probe classes.

Layer 3: Communication between monitored systems and the event dispatchers at Layer 4 are provided by this

layer. Choosing the communications channel(s) and definingthe protocols for data packaging and transmission are

the primary responsibilities of this layer. The activitiesin this layer are often tightly integrated with Layers 2 and

4, and may be implemented to some extent in those layers. TheEDProbe andSocketProbe classes provide

fields and buffers used by the actual byte-code probes inserted into the program. They may explicitly manage socket

communications and protocols or those functions may be provided implicitly, as is the case when using the Java Debug

Interface (JDI).

Layer 4: The event dispatcher layer is the most important layer for clients of the framework, as this is the layer at

which event streams are actually dispatched (published) tolisteners (subscribers). Event dispatchers are responsible for

accepting information received from Layer 3 and packaging it into the discrete events that are dispatched to registered

listeners.Sofya provides event dispatchers for both semantic and structural events.

TheProgramEventDispatcher is the structural event publisher, which provides basic information about the

execution of structural entities in the observed system, such as basic blocks and branches. It depends on components

implementing aSTRATEGY for receiving instrumentation data from the observed system, in the form of components

implementing aSocketProcessingStrategy. As noted previously, theSocketProbe in Layer 3 handles

processing and transmission of data, recorded to its buffers by structural instrumentation probes, to the event dis-

patcher using a socket. FourSocketProcessingStrategy implementations are provided to receive coverage

and sequence execution event streams for basic blocks and branches. Coverage event streams are dispatched via

theBlockCoverageListener andBranch-CoverageListener interfaces, sequence event streams via the

BlockEventListener andBranchEventListener interfaces. Coverage listeners are served by a listener

management class,CoverageListenerManager, to improve efficiency in the case where only one listener is

interested in the coverage event stream. Components at Layer 5 or clients at Layer 6 implement these interfaces to

subscribe to event streams.

A SemanticEventDispatcher acts as the publisher for semantic event streams. Semantic events include,

but are not limited to, events such as field reads and writes, lock acquire and release, and method call, entry and exit.

Informally, we define semantic events as events that communicate information that is sensitive to the meaning of the

program as it impacts data state or control dependence. The JDI provides the Layer 3 communications implementation

used by theSemanticEventDispatcher, assisted by theEDProbe. A subset of the events supported for this

type of event stream are implemented by theSemanticInstrumentor at Layer 2. Layer 1 information is specified
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sys.prog
mod.prog
E - virtual call FeatureImpl.*{

in ClientManager.*
not ClientManager.setup *

}
E + virtual call FeatureImpl.init *{ }
E + interfacecall #INT RemoteAPI.*{ }

Figure 2: Sample EDL specification.

by users of the semantic event dispatcher in a rich language for describing the events to be observed, which is described

in Section 3.2. The semantic event stream is published via theEventListener interface.

Layer 5: This layer provides components for filtering and splittingsemantic event streams published by the event dis-

patchers.2 Of greatest interest are the thread and object stream filtering classes. TheThreadFilter splits an event

stream, routing events occurring in separate threads to separate listeners. It depends onChainedEventListener-

Factory to create new thread listeners on demand. Similarly, anObjectFilter class is provided to route events

occurring on specific objects to separate listeners.

Layer 6: This is the layer in which client analyses are implemented as consumers of the event streams published by

Layer 4 and routed by Layer 5.Sofya provides an atomicity checker and a regression test selection tool (see Section

5) as examples of applications at this layer. The former demonstrates direct implementation of the listener interfacesto

process a semantic event stream as it is received. The latterdemonstrates use of a structural event listener to generate

trace files on which to perform its analysis.

3.2 Implementation Challenges Revisited

We now revisit the challenges discussed in Section 2; addressing them has been a guiding principle in the design of

Sofya.

Program observations.Sofya addresses the need to define a specific set of observable events in two different ways

depending on whether a structural or semantic event stream is to be published. Static input controls are provided to

limit instrumentation and the selection of JDI events to theminimum necessary to publish a specified set of events.

These are further augmented by runtime controls, but we savediscussion of these features for when we address the

need for selective event processing.

To address the need for selection of observable events when publishing a structural event stream, the instrumentors

present parameters to select the types of structural entities in the program to be observed. Instrumentation is then in-

serted only as necessary to publish events for the selected structural entities. Observable events can also be constrained

by instrumenting a subset of classes, and the programmatic APIs of the instrumentors enable selection of individual

methods for instrumentation. This provides a low barrier ofentry to a high level of flexibility in specifying structural

events to be observed.

A rich event description language (EDL) is provided to enable the specification of observations generated in se-

mantic event streams. EDL can specify the parts of a system onwhich events should be observed and published; for

2We find that applications using structural event streams rarely require complex filtering or event processing functionality.
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example, the classes on which method call events should be published as program observations. A rule system sup-

porting wildcards and an additive/subtractive precedencemodel supports powerful specification of subsets and specific

parts of a program for which observations should be captured. The language supports even further expressiveness by

providing the ability to constrain the publishing of eventsrelated to an observable based on the location at which the

event is raised (for example, a call to a method on an observable class could be excluded if it occurs within a specific

method of another class).

Figure 2 presents a simple EDL specification that we use to illustrate the capabilities of the language. The first

two lines identify files in theSofya database directory (a central repository for a variety of intermediate and output

files created by and shared amongSofya components) that list Java classes related to the program under analysis.

The first line specifies the file, “sys.prog”, that lists the classes that comprise the entire program, which is necessary

to insert all required instrumentation. The next line specifies the file, “mod.prog”, that lists the classes for which

program observations are published by default. This means that all events related to those classes will be published

unless excluded by rules in the specification. The remainderof the file is a set of rules specifying additional constraints

on what events are considered observations of interest and where they may occur.

The first rule specifies that all calls to virtual methods implemented in the classFeatureImpl are to be excluded

from the event stream if they occur in any method in classClientManager other than method “setup”. Package

qualifiers are required forFeatureImpl andClientManager if appropriate.

The second rule specifies that all calls to the virtual method“init” of class FeatureImpl with any signature are

to be included, regardless of where they occur. This overrides the first rule for calls to method(s) “init”, but not for

calls to other methods.

In the third rule, the “#INT” token is an example of anevent payloadmodifier. It indicates that the method calls

should be observed using an “interceptor” method that enables the event to provide access to information about the

receiver object and arguments to the method. Because there is a higher cost associated with using interceptors, they are

not used by default. However, this illustrates additionalflexibility afforded by EDL to refine the information delivered

to clients, thereby providing control over the tradeoffs between information and efficiency.

Efficient event generation.Sofya provides efficient instrumentation to reduce the performance penalty experienced

by observed programs. When observing execution of structural entities,Sofya uses arrays (typically byte arrays)

to record execution of code entities. Array accesses are efficient compared to method calls, and are common inside

loops, which leads to very efficient handling of the instructions. Method calls are made by the instrumentation only

to retrieve and commit these arrays on method entry and exit.When observing semantic events,Sofya writes coded

integers to static fields, also an efficient operation.3 In practice, this has led to significant observed improvements in

the execution times of instrumented systems. These strategies and optimizations for event generation provide a level

of sophistication we believe has not been achieved by other tools for observing events in Java programs.

Layer 2 of theSofya architecture offers opportunities for powerful customization in instrumentation. Unlike

higher layers, customization of instrumentation may entail a greater level of implementation effort. Nonetheless, sig-

nificant support is provided to facilitate such efforts, beyond that available from libraries such as BCEL. A new instru-

mentor can be implemented by sub-classing oneSofya class and overriding five abstract methods. The infrastructure

3The fields are monitored by the JDI, and used to then insert the appropriate events in the event stream with other events raised natively by the
JDI itself.
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provided bySofya handles all of the details of using BCEL to load classes, provide access to byte-codes, and commit

changes, in addition to a variety of utility methods to perform commonly needed but error-prone transformations.

Handling of invocation and communication between monitored systems and analysis components is greatly sim-

plified bySofya. All of the event capture components inSofya provide efficient, rigorously tested implementations

that handle the tasks of setting up and managing communication between observed systems and analysis components.

Implementors of new dynamic analyses can focus attention onthe design of their analysis tools and techniques with-

out spending time on the details of mechanisms for capturingand communicating the events on which those analyses

depend.

For applications that seek to customize the communication layer, the task is simplified to reasoning about and

implementing newprotocolsfor communication, rather than dealing with the details of connection and link manage-

ment. This separation of concerns underscores the flexibility of the layered architecture in providing for customization

without impacting other functions of the architecture significantly. It allows different protocols and communications

strategies to be used while reinforcing familiarity by preserving a consistent publish/subscribe model at higher layers

used by client applications.

Selective event processing.We use two approaches to address this problem inSofya. First, the user has the flexibility

to select events of interest and ignore irrelevant events using the features described for defining observations. This type

of static control enables the exclusion of events entirely if they are known to be irrelevant to a particular analysis, with

the benefit of an associated reduction in overhead. Second, controls and tools are provided to filter and classify events

as they are captured and relayed to analysis tools.

Sofya addresses the problem of efficient event processing and storage through its use of the observer pattern. A

particular analysis component that needs to work online simply implements an interface and then registers itself with

the event dispatcher to receive published events.Sofya provides programmatic components to implement chains of

filters and split events into separate streams using associated event data (such as thread identifier or receiver object).

The process is transparent to attached listeners, enablingthese filtered or selected event streams to be processed

independently exactly as if they were the original event stream.

A trace file generator actually just becomes another filter (or “target”) at the end of a filter chain, that is processing

events online and recording a trace file (or files) in whateverformat is best suited to the analysis. We believe that

recasting a trace file as just another type of subscriber to anevent stream further illustrates the great flexibility of

the layered publish/subscribe architecture. The separation of these capabilities into an independent layer supports

the ability to easily implement customized event filtering and selection mechanisms, including trace file generation,

facilitating rapid development of efficient analyses.

Concurrent event reporting. Sofya provides solutions to address issues with both instrumentation and JVMTI/JDI

approaches to reliably handling capture of events in concurrent systems.

Sofya implements a hybrid approach combining the use of instrumentation and the JDI to publish semantic events

from an observed program. Where it is not possible to obtain accurate event data non-intrusively with instrumentation,

Sofya utilizes the JDI to capture such events. The JDI raisesevents synchronously with the execution of corresponding

code, and guarantees the order of reported events to be consistent with the order of execution; this addresses the

concerns associated with instrumentation. Instrumentation is still used where synchronization of probes with observed

11



events is not necessary for correctness. An example of such asituation, alluded to earlier, is a probe to observe method

entry. Such a probe can be inserted as the first code in a method. If the probe has executed, the method is guaranteed to

have been entered, but no program code will have yet executed. A context switch immediately after execution of such

a probe has no ramifications for analyses consuming the eventstream. Such a hybrid technique allows instrumentation

to improve efficiency for some types of events and enables observation of custom events where safely possible, while

employing the JDI to satisfy the requirement of accurate, non-interfering observation of events that cannot be handled

by instrumentation alone. Based on our survey of prior work,we believe this hybrid approach is novel and represents

a significant achievement in efficient and validity-preserving observation of events in concurrent systems.

Structural coverage event dispatch is inherently thread-safe. The structural sequence event dispatchers are not,

an issue we will address in future work. However, we find that amajority of dynamic analyses that use structural

observations are interested in coverage data, which is safely implemented using the efficient instrumentation-only

scheme previously discussed.

4 Survey: Dynamic Java Analyses

Recent developments involving dynamic analysis of Java programs have involved program design, validation, verifica-

tion, profiling, security, and metric collection activities, among others. We now survey a number of these analyses and

the tools that implement them, and discuss how they relate tothe capabilities of theSofya framework. We organize

this survey based on whether an analysisminesinformation from a trace and constructs a model for later use, orchecks

conformance of a trace against a given model; we note that analyses may be structured as combinations of mining and

checking phases. We also discuss a common class of mining applications that is concerned withperformanceanalysis.

4.1 Mining Applications

Dynamic analyses for testing and maintenance, such as coverage measurement, have been extensively investigated in

the Java research and development communities. Such analyses mine program executions to accumulate information

about sets of program locations; for example, whether they are reached in some program run. We describe two

frameworks for building such analyses.

InsECTJis a lightweight generic framework for instrumenting Java software [28] that offers a relatively simple

and elegant design for performing basic instrumentation tasks. Its principle contribution is a framework that hides

many details of using the underlying byte-code manipulation library, BCEL. Instrumentation capabilities of the type

provided by InsECTJ are all available inSofya, and custom instrumentors can also be implemented in theSofya

framework. Unlike InsECTJ, however,Sofya provides, as part of its core framework, existing implementations of

complex instrumentation techniques that support a wide range of analyses.

TheJava Architecture for Bytecode Analysis(JABA) [14] is a program analysis tool set that appears4 to provide

functionality to support the kinds of analyses offered by the structural instrumentation and event dispatch components

of Sofya, such as control flow analyses and coverage tracing. To the best of our knowledge, JABA does not provide

support for more general dynamic analysis problems such as those described below.

4JABA is not publicly available and a detailed description ofthe capabilities of the tool is not available.
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Neither InsECTJ nor JABA consider the challenges posed to instrumentation in a multithreaded context, and each

will suffer from all of the problems described in Section 2.

Daikon [10] is a toolset for detecting likely program data invariants. Daikon mines information about data values

at specific locations in a program, such as method call and return points, using theChicory [6] front-end to target

Java programs. Daikon’s analysis phases are independent ofChicory (to achieve language independence), and they

communicate through a well-defined trace file format.Sofya could be used to implement the functionality ofChicory

and generate such files, but one could also structure an online version of Daikon by attaching its analysis phases as

listeners to theSofya generated event stream, thereby saving the expense of writing potentially large trace files.

Recent work on mining properties about sequencing relationships between sets of program locations, perhaps

distinguished by data values, has focused on inferring object protocol models for APIs [2, 34]. General approaches

that attempt tolearn arbitrary protocols have proven difficult to scale and the resulting models are hard to exploit.

More recent work has looked at instantiating predefined classes of models to help with these difficulties [33, 35].

Sofya can capture all of the information needed to mine sequencingspecifications that relate method calls, normal

and exceptional returns, field references, and other features related to API usage. Further,Sofya can be configured

to capture aspects of the data state of the program at the observed points;, e.g., to correlate calls based on receiver

object identity. While many tools that implement mining of sequencing specifications work offline, one could easily

build online miners usingSofya, which offers the potential for eliminating large trace files. Section 5 discusses our

experiences implementing Weimer’s pattern mining technique [33] inSofya.

4.2 Checking Applications

There has been a significant amount of work using formal models of behavior, developed in the program specifi-

cation and verification communities, to performrun-time verification. The models considered vary from built-in

restricted patterns to user supplied general state machines and temporal logics.Java PathExplorer (JPaX)[13], Java

MultiPathExplorer(JMPaX) [29],JavaMOP[5], TGV [15], andHAWK [7] are examples that range over this space of

models. These tools vary in the mechanisms used to generate relevant events; for example, JPaX uses static instrumen-

tation and JavaMOP uses aspect oriented techniques, but each decouples the checking portion to a separate consumer

of the event stream and uses slightly different checking techniques, for example, various forms of automata in HAWK

and JPax, and vector clock techniques in JMPaX. This kind of decoupling can be achieved in theSofya architecture

and, in fact, several analysis techniques, such as an automata checker and vector clock implementation, are available

as existingSofya components; we discuss such components in Section 5. Several of the run-time verification tools

discussed above are limited in the set of observations they can make of the program; for example, properties that

require information about object instance identity are in general not supported, and observing the execution of locking

operations with an instrumentation-only approach, as in JPaX and Java-MOP, results in the problems discussed in Sec-

tion 2. Thus, a framework likeSofya offers the possibility of supporting a broader range of suchanalysis problems,

and of improving the accuracy and validity of analysis results.

Java-MaCis a tool that implements a run-time checking of Java programs against formal specifications [18].

Unlike the tools described above, Java-MaC employs a generative approach to insert instrumentation and create the

property checking monitors it uses to check conformance. Users write specifications in a special script language that
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defines the events to be captured and the properties to be verified. These are then compiled into instrumentation and

monitors that are incorporated into the running program. Relative to Sofya’s more traditional architecture, Java-

MaC relieves the user of the need to code analysis components, but it also makes it impossible to combine multiple

analysis components to achieve sophisticated run-time analyses. Furthermore, the instrumentation in Java-MaC is

very intrusive. It interferes with scheduling and incurs significant run-time overhead, thus reducing the fidelity of the

generated analyses as described in Section 2.

In Section 5, we describe the implementation of a simple sequencing property checker inSofya. We also de-

scribe the implementation of a state-of-the-art dynamic analysis for detecting method atomicity. Our implementation

improves on the Atomizer [11] tool by incorporating supporting analyses such as dynamic race detection, escape

analysis, and vector clock techniques, much as Stoller and Wang’s tool [32] does. This provides strong evidence that

Sofya can be used to implement sophisticated analyses.

The literature contains numerous other run-time analyses including, for example, analyses to find security flaws

[22], detect concurrency anti-patterns [4], determine call chain coverage [26], and calculate object coupling metrics

[1]. In all of these cases, we were able to map the applicationspecific capabilities and components onto theSofya

framework.

4.3 Performance Analyses

Dynamic Java analysis tools that perform profiling and performance data collection appear to be in wide use; we found

18 active Sourceforge projects focused on such tools. Theseapplications range in capability from simply accumulating

information about the number of occurrences of specific events (for example, calls to a specific method), to gathering

information about resource utilization, space consumed byinstances of a type, garbage collection information, or

run-time of method activation.

Most Java profiling tools use the Java Virtual Machine Profiling Interface (JVMPI) to capture program execution

events that are used to compile dynamic performance metrics. The JVMPI is a lower layer interface to the same types of

events available through the JDI; thus, the same types of events can be captured usingSofya. Sofya is not designed

explicitly to support performance analysis applications,but any profiling application that simply accumulates counts of

events such as method invocations, object allocations, or synchronization statements is a simpleSofya application.

Sofya could easily be extended to support a broader range of performance analyses; for example, the delivery of

timestamps with events would allow most of the timing-related capabilities available in existing Java tools to be

implemented asSofya clients, and adding optional timestamp payloads is a trivial extension toSofya’s existing

event-generation support.

5 Sofya Applications

To evaluate the utility, flexibility, and usability ofSofya we selected three analysis applications from the set surveyed

in Section 4 to implement inSofya ourselves. The first two analyses were implemented by the first author, who

is the developer ofSofya. The final analysis was implemented by the second author, whowas not familiar with the

architectural details or APIs ofSofya. We report information from personal time-logs that we maintained during

the development of the two smaller analyses. While anecdotal, we believe that this information on development
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effort provides evidence thatSofya facilitates rapid development of interesting analyses by both experienced and

inexperienced users of the framework.

The first application we implemented, which we discuss in thegreatest detail, is a version of the reduction-based

dynamic atomicity checking algorithm described by Wang andStoller [32]. This application is composed of a set

of core components to implement the logic of reduction automata, and a set of supplementary analysis components

described in [32]. These supplementary analyses are implemented to improve the precision of the atomicity checker;

however, the modular design facilitated bySofya enables them to function as independent analysis components

that can also be used by other analyses built on the framework. The second application is a simple technique for

mining (ab)∗ patterns from program traces presented by Weimer and Necula[33]. The third application is a finite

state automata (FSA) property checking technique that utilizes the Propel [31] framework from the University of

Massachusetts. We conclude this section with a brief description of several other dynamic (and static) analyses that

are implemented in or supported bySofya.

5.1 Reduction-based Atomicity Checking
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Figure 3: Atomicity Checker Architecture

Lipton [21] developed the concept ofreductionas a

means for simplifying reasoning about the correct-

ness of parallel programs. The key concept in reduc-

tion is to determine whether the effects of all activa-

tions of a given method in all parallel program execu-

tions are equivalent to the effects of some sequential

activation of the method; such a method is said to

beatomic. Intuitively, method atomicity captures the

informal notion ofthread safetythat is often a goal

in developing Java components. Method atomicity

for Java has garnered interest in recent years due to

work by Flanagan and colleagues [11, 12] in develop-

ing both static and dynamic analyses to reason about

method atomicity.

We focus on the recent work of Wang and

Stoller [32], who have developed a state-of-the-art

dynamic analysis for method atomicity. More specif-

ically, we focus on their reduction-based analysis.

The idea behind all reduction-based reasoning is that

all actions performed by a method can be classified

as one of four types of operations. Using this classificationscheme, if the sequence of actions in a method satisfies

a particular regular expression, the method is judged to be atomic. Abstractly the regular expression enforces two

requirements on the execution of a method: (1) the method cannot be involved in any data races, and (2) the method

must be able to run to completion without requiring execution of another thread; we refer the reader to [32] for details.
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5.1.1 Implementation

Figure 3 presents the architecture ofSofya’s atomicity checker; solid edges with triangular heads indicate interface

implementation or class extension, solid edges with diamond head indicate instance creation, and directed dashed

edges indicate data flow. Conceptually, the checker can be divided into itscorecomponents and a set ofsupplementary

analysesthat are used to boost precision.

The core components are responsible for classifying observed program events and matching event streams for

methods to the regular expression indicating atomicity. AnEventClassifier maps events received from the

SemanticEventDispatcher as one of four symbols, denoting the classifications in the alphabet of the regu-

lar expression. AnRBAutomata class instance matches symbols from the event stream to the regular expression

for a method activation. TheAutomataController observes the event stream, starting and stopping individ-

ual automata on method entry and exit. Events are forwarded to activeRBAutomata, which request classifica-

tion from theEventClassifier, or in certain cases classify the events themselves to drivestate transitions. A

ResultCollector merges the final states of all automata executed for each method. If all instances of the au-

tomata for a given method reached an accept state, the methodis reported as atomic.

These components are configured and connected by a main method (not shown) that consists mostly of stan-

dard code used by analyses implemented on the semantic eventdispatch components. The application specific parts

of this involve creating aDefaultEventClassifier, which classifies events using simple heuristics, and an

AutomataController, and registering them asEventListeners with theSemanticEventDispatcher.

5.1.2 Supplementary Analyses

Even a basic implementation of the reduction-based automata strategy for dynamic atomicity checking effectively

reveals atomicity errors in programs [11]. Wang and Stollerdiscuss three supporting dynamic analyses, each of which

can improve the precision of the analysis to reduce the rate of false negative reports (that is, atomic methods reported

as being non-atomic). The first author also implemented versions of these supporting analyses, and we overview

their implementations below; we defer a number of details ofthe implementations to their documentation, available at

http://sofya.unl.edu.

Each analysis is implemented as an independent component inSofya. They are combined with the core analysis,

usingSofya’s event-listener framework, to produce an atomicity analysis that is comparable in terms of precision

and performance to the one described in [32]. We believe thatthe ability to create these different analyses, each of

which is interesting in its own right, and make them available as building blocks for other analyses built usingSofya,

illustrates the ability ofSofya’s architecture to promote reuse and thereby reduce development effort.

Dynamic Escape Analysis: most interesting data manipulated by Java programs is stored on the heap. The default

atomicity classification pessimistically assumes that allaccesses to heap data are visible to multiple threads, but if

one can determine that a heap-access influences a single thread it can be classified differently, improving analysis

precision. We implemented the dynamic escape detection algorithm described in [32], which considers an object

escaped if it is assigned to a static field or already escaped object, passed as an argument to a native method, or used

as the runnable target of a new thread. OurDynamicEscapeDetector analysis component subscribes to receive

events from theSemanticEventDispatcher and monitors for these conditions. The escape detector usesunique
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identifiers, assigned by the framework to each observed object, to record escaped objects and provide a query method

to check whether the object with a given ID is escaped.

Multi-lockset Analysis: a heap object that is judged to escape a thread is not necessarily accessible to multiple

threads concurrently. Multi-threaded Java programs commonly use a locking discipline to ensure coherent access to

shared heap structures. The lockset algorithm attempts to determine whether any concurrent read and write accesses

to a field are not protected by a common lock. It is sufficient tonote that a lockset algorithm can be implemented if

it is possible to determine the locks held by a thread when it accesses or modifies a field. Locks in Java are built into

each object; thus,Sofya can uniquely identify each lock using the object identifier.For any event,Sofya is able

to report the locks held by the thread at the time of the event,which allows theMultiLocksetRaceDetector

analysis to be implemented as a subscriber to the semantic event stream.

Happens-before Analysis: just because a heap object is not lock-protected does not mean that it is accessed by

multiple threads concurrently. Synchronization between threads that is unrelated to the shared heap object may imply a

strict ordering on accesses from those threads. A happens-before analysis attempts to determine whether two accesses

to a field involving at least one write access can be concurrent. The analysis uses information about when threads

start and join each other to decide whether field accesses arepossibly concurrent, and can be extended to account for

ordering imposed by the use of lock waits and notifies.

Wang and Stoller describe a technique for implementing a happens-before analysis using directed acyclic graphs,

but they point out that a more efficient implementation usingvector clocks may be possible [32]. We implemented this

improvement by adapting O’Callahan and Choi’s [23] hybrid limited happens-before algorithm using vector clocks.

TheHappensBeforeChecker analysis is implemented as a subscriber to the semantic event stream. Vector clocks

are created and updated on each thread start or join event. Oneach field access, the vector clocks for live threads

are associated with that field. It is then possible to providea method to query whether a field access is potentially

concurrent with any access to the same field.

5.2 Mining Temporal Specifications

Weimer and Necula [33] presented a heuristic for mining simple temporal patterns of the form(ab)∗; that is, patterns

that specify thata actions andb actions occur in matching pairs. The classic example of sucha pattern is the intended

sequencing ofopen andclose operations on a file. Their observation was that theb events are likely to be repre-

sented in exception handling code. If such a pattern exists,its presence will be attested to by the programmer’s concern

in assuring that theb always gets executed, even in the face of exceptional program behavior. For the purposes of this

analysis, candidate events are always method calls.

Mining for these patterns using this heuristic involves three steps. First, the analysis must identify method calls

that are in exception handling sections of the code. We builta simple parser, using the parser generator ANTLR [24]

and a grammar for Java 1.5 source code [16]. The grammar was instrumented to identify calls occurring incatch

andfinally blocks, so that the parser can output a file containing a list of such calls. Second, we created aSofya

application that inputs the file produced by the parser, a semantic event specification that activates observation of calls,

and the program to be observed, and uses the semantic event dispatcher to run the program. Call events are dispatched

to an analysis component that uses the list of “cleanup” calls to build a set of candidateab patterns. In the third
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Analysis Developer Learn Learn Design Total LOC
Sofya Other +Impl. [17]

(ab)∗ lead dev. 0:00 2:08 6:12 8:20 223
FSA 2nd author 2:30 1:53 1:58 6:25 160

OSFSA 2nd author 0:32 0:00 0:33 1:05 149

Table 1: Analysis Development Time (hours:minutes)

step, heuristics are used to screen the set of patterns reported to users; we did not implement the screening techniques

described in the paper, as they are not central to assessing the value ofSofya in implementing this analysis.

Table 1 reports the time recorded by theleaddeveloper ofSofya to build the(ab)∗ analysis.5 The time is broken

down into time spentlearning Sofya, which for the lead developer was 0, time spentlearning othertools, which in this

case was ANTLR,design and implementationtime, andtotal time. The final column in the table reports non-comment

source lines of code for theSofya related portions of the analysis implementations.

5.3 FSA Property Checking with Propel

Tools for checking conformance of execution traces with finite-state automata (FSA) specifications have been devel-

oped by a number of researchers. Such tools require support for creating the specification, mapping the transitions

automata onto program actions, tracking the state of the automata along a program execution, and rendering a verdict

about conformance.

We used the Propel [31] tool to create FSA specifications. Propel has many advantages over existing approaches

for creating such specifications, and it makes use of a rich underlying framework for creating, manipulating, and

serializing finite-state automata. In Propel we can define, for example, an alphabet of symbols of the form

ClassName:MethodName that are used to construct specifications of legal sequencesof API calls; these symbols

are also used to generate EDL forSofya. Once we have defined the structure of the desired call sequences, Propel

encodes those sequences as an FSA.

We implemented two versions of a dynamic FSA conformance checker in Sofya:per-threadandper-receiver-

objectcheckers; we refer to the latter as anobject-sensitiveFSA checker (OSFSA). Both checkers implement a sub-

type ofEventSelectionFilter that handles calls on the methods and classes encoded in the EDL and triggers

the appropriate transitions in the FSA; each instance of this sub-type stores the current FSA state reached by the

sequence of calls.

The per-thread checker applies aThreadFilter to the raw event stream to split the stream into separate event

streams for each active thread in the system. AnEventSelectionFilter instance is generated for each thread

and chained to the output of the thread filter; thus, the sequencing constraint of the FSA is checked against the calls

produced by each thread separately. An error is indicated ifany thread’s call sequence ends in a non-accepting FSA

state. The object-sensitive checker applies anObjectFilter to the raw event stream to split the stream into separate

event streams for each distinct allocated object in the system. By minimizing the EDL specification, only instances

of classes named in the FSA alphabet will ever have events generated for them. As above, an error is indicated if

5We do not report a time log for the atomicity application because it was was initially built on an older version of theSofya API that experienced
changes concurrent with its development.
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the sequence of calls on any object instance ends in a non-accepting FSA state. The resulting checker is capable

of detecting API usage errors arising from improper synchronization.

The FSA and OSFSA analyses were implemented by the second author of the paper. Previously, this author had

looked at neither theSofya nor thePropel APIs. Furthermore, the author’s understanding of the architecture of

Sofya at that time was probably less well-developed than what a careful reader of this paper will garner. As one

would expect, this developer had to spend a non-trivial amount of time learning theSofya APIs.

Due in part to the fact that the FSA checker is a fundamentallysimpler analysis than the(ab)∗ miner, and to the

fact that the author was able to use the(ab)∗ miner as a model for implementation, the development time for this

analysis was quite small. The additional time needed to develop the OSFSA checker was very short, indicating that

knowledge ofSofya’s architecture and components can allow analysis variantsto be developed very quickly.

5.4 Overview of Other Applications

A variety of other applications and analyses have been developed, a number of which use the structural event dispatch

components ofSofya, some of which we provide withSofya. Most originate as applications built onGalileo,

an older tool set from whichSofya evolved.

DejaVu is a tool for regression test selection in Java. Test selection uses change information between versions of

a software system to select test cases that exercise those changes. This is accomplished by executing the test cases for

a version of the system and recording the structural coverage achieved by those test cases. Coverage information from

the test suite is used to determine which test cases cover changed code and those test cases are selected [25].DejaVu

uses the basic block instrumentation and event dispatch components, thus serving as an example of a sophisticated

testing technique implemented using the structural event dispatch capabilities ofSofya.

Structural event dispatch components ofSofya have been used to implement and evaluate test case prioritization

techniques [8] and dynamic impact analysis techniques [20]. Test case prioritization is another widely investigated

regression testing technique that seeks to reorder test suites such that test cases with the highest probability of exposing

faults are executed first. Dynamic impact analysis, which uses the structural sequence tracing capabilities ofSofya,

seeks to determine and report how changes to one part of a program impact other parts of the same program.

Finally,Sofya provides implementations of advanced static type inference techniques for exceptional control flow

[19], based on interpretations of algorithms for varying the costs of analyses against the precision of resulting control

flow representations [30]. This offers advanced capabilities in Layer 1 that allow clients of the structural event dispatch

components of the framework to choose tradeoffs between analysis cost and precision. To the authors’ knowledge,

these are the only publicly available implementations of these algorithms, offering the possibility of precision in

control flow based analyses not achievable in other tool sets.

6 Conclusions and Future Work

Dynamic analysis tools and techniques are important to the practice of software engineering. They are applied to a wide

variety of problems, and improve practitioners’ confidencein the correctness, security, performance, and reliability

of software systems. They are also rapidly gaining importance for their ability to contribute to the solution of hard

problems in static analysis, and vice versa. Thus it becomesever more important that the community have access
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to a framework to facilitate the implementation, evaluation, and comparison of new dynamic analysis techniques

– a framework that relieves researchers and practitioners of the challenges inherent in constructing robust, reliable

dynamic analysis tools for Java software, including multi-threaded software. We believe thatSofya provides just

such a framework for enhancing and driving forward the stateof the art in dynamic program analysis in software

engineering.Sofya addresses these challenges with an architecture that abstracts the solutions behind expressive

interfaces, and we have demonstrated the effectiveness of the framework with example applications.

There are areas of extension toSofya that we intend to pursue in future work. We would particularly like to

pursue avenues for dynamic instrumentation removal, wheresuch a capability is appropriate, and new additions to the

Java language hold strong promise in this area. As the JDI continues to evolve with new releases, we will continue

to explore ways to exploit this functionality to support new, and improved, handling of events. Such changes will

improve the flexibility and performance of the framework.

We are makingSofya available to the public, with examples, tutorials, and extensive API documentation. Current

information onSofya can be found athttp://sofya.unl.edu. It is our hope that this will facilitate rapid

development of new dynamic analysis tools and techniques, and encourage more frequent and reliable empirical

investigation and comparison of such tools and techniques.By enabling researchers and practitioners to more readily

consider evaluation and comparison of proposed techniques, we believe this will accelerate advances in the state of

the art in dynamic program analysis and thus enable more aggressive delivery of new techniques that will improve the

reliability of all software.
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